Figures of Merit for Stochastic Background Searches

Jennifer Barré jlbarre@loyno.edu
John T. Whelan jtwhelan@loyno.edu
Loyola University New Orleans

Presented at the 15th LSC Meeting 2004 March 18

G040153-00-Z

Overview

Several measures of stochastic sensitivity:

- 1. Instantaneous overall sensitivity
- 2. Instantaneous sensitivity by frequency
- 3. Cumulative sensitivity over the run

Detectable Ω_{GW}

Basis for all figures of merit: Assuming flat GW spectrum $(\Omega_{\rm GW}(f)={\rm constant}),$

the stochastic background strength we could detect in time T is Ω_s :

$$\frac{1}{\Omega_{\rm S}^2} \propto T \left(\int_{f_{\rm min}}^{f_{\rm max}} df \frac{\gamma^2(f)}{f^6 P_1(f) P_2(f)} \right)$$

- \bullet Use Ω_{S}^{-2} instead of Ω_{S} so FOM large when sensitive
- $P_1(f) \& P_2(f)$ are (calibrated) noise PSDs of two detectors
- $\gamma(f)$ is the overlap reduction function (known function of frequency, $\equiv 1$ for H1-H2)

Overlap Reduction Function

LIGO-Livingston / LIGO Hanford

(For correlations between LHO 2km & LHO 4km, $\gamma(f) \equiv 1$)

Figures of Merit

Three planned FOMs:

- 1. Instantaneous sensitivity: value of integral for $\Omega_{\rm S}^{-2}$ (analogous to inspiral range)
- 2. Instantaneous sensitivity by frequency: value of integrand $\frac{\gamma^2(f)}{f^6P_1(f)P_2(f)}$ in arbitrary units (analogous to inspiral range integrand)
- 3. Cumulative sensitivity: stoch BG we could detect using all the data from the run Sum of all Ω_s^{-2} values so far:

$$\frac{1}{\Omega_{\text{cume}}^2} = \frac{1}{\Omega_{\text{S}}(1)^2} + \frac{1}{\Omega_{\text{S}}(2)^2} + \dots$$

Choice of Power Spectrum

FOM measures sensitivity for a pair of instruments (H1/H2, H1/L1 or H2/L1). Could use

- 1. Current PSDs from both instruments: combined sensitivity (definitely appropriate for cumulative measurement)
- 2. Current PSD from one instrument, reference PSD from other may be more useful for control-room diagnosis

 LLO may not want to wonder if the drop in sensitivity was due to L1 or H1

(Also, if other IFO not in lock, combined $\Omega_s^{-2} = 0$.)

Implementation

- DMT monitor StochMon being written for use in S4
- Calculation similar to that used for SenseMonitor much of the code can be cannibalized.
- Technical issue: Transfer of PSDs between LLO & LHO

Lazzarini Differential Sensitivity Measure

$$d\left(\Omega_{\rm S}^{-2}\right) \propto T\left(\int_{f_{\rm min}}^{f_{\rm max}} df \frac{\gamma^2(f)}{f^6 P_1(f) P_2(f)} \left[-\frac{dP_1(f)}{P_1(f)} - \frac{dP_2(f)}{P_2(f)} \right] \right)$$