

Storing time-domain calibration information in frame files

Martin Hewitson, Gabriela Gonzalez, Mike Landry, Brian O'Reilly Albert Lazzarini, Xavier Siemens

Documentation

- This presentation is based on
 - Technical note T040026-01-E
 - in writing
 - Telecons and discussions

Current status

- Both LIGO and GEO have time-domain calibrated data
- So far both calibrated data and info are stored in a dispersed way
 - web pages, logbook pages, frame files, other...
- Both LIGO and GEO currently store double precision h(t)
- We have no coherent final calibration product as yet

Philosophy

- Capture sufficient information to reproduce the calibration at any time in the future
 - code version, raw data, filter/processing data
 - Calibration code <u>must</u> be under version control (some already is)
 - Have various reduced data set levels
 - Store double and single precision version of h(t)
 - Keep data quality information with calibrated data
 - Have a generic storage system across detectors

Frame file naming convention

<SITE>-<IFO>_RDS_C##_L#-<GPSTimeSec>-<DeltaT-sec>.gwf

<SITE>: G, H, L

<IFO>: Interferometer ID = H1, H2, L1, G1, etc.

C##: Version of calibrated data, ## = 01-99

L#: RDS level (see later), # = 0,1,2,...

Proposed RDS Levels

Level 0

- Detector info
- Calibration version number
- High-level data quality
- raw data
- calibration filters
- detailed data quality info
- band-limited h(t)
 - single and double precision

Level 1

- Detector info
- Calibration version number
- High-level data quality
- calibration filters
- detailed data quality info
- band-limited h(t)
 - single and double precision

Level 2

- Detector info
- Calibration version number
- High-level data quality
- calibration filters
- detailed data quality info
- single precision h(t)

Frame header (FrameH)

- Standard use of most fields
- dataQuality field to store high-level data quality info

ADC Structures (FrADCData)

- Store raw (input) data
 - AS_Q, DARM_CTRL channel for LIGO
 - LSC_MID_EP-P_HP, LSC_MID_EP-Q_HP, LSC_MID_CAL for GEO

Detector structure (FrDetector)

- Detector specific details
 - site, orientation, etc.
- Table of (detailed) data quality flags

History information (FrHistory)

- Store information about this version of the calibrated data
 - Production site, code version, production date, production machine(s), etc.

Processed data (FrProcData)

- Storage of intermediate data products
 - Estimated detector parameters
 - $\alpha(t)$, $\beta(t)$ for LIGO
 - P0-n(t) for GEO
- Storage of h(t) time-series
 - vector of data (single and double precision)
 - valid frequency range

Static data structures (FstatData)

- To store all filters and quasi-static information used in calibration process (IIR, FIR)
 - coefficients, sample rate, etc.
- Filter data to be stored in each frame file
- New (internal) structures need defined for storing this data

Time-scale

- First version of documentation to be in place in the next month or so
- S3 data in reproduced by mid august
- Fully tested implementation in place for S4 (October)

Open questions

- What size of frame files do we want?
 - examples
 - 16x1 second frame per file (~4 Mb per file)
 - 60x1 second frames per file (~15 Mb per file)
 - 3600x1 second frames per file (~900 Mb per file)
 - •
 - Static data (filters etc.) to be stored in each file
- Is single precision needed in the long term?

Summary

- Aim to have a fully self-consistent format for storing calibrated h(t) data
 - consistent across detectors
 - various RDS levels
 - full calibration version history
- Calibrated data sets should be reproducible from information in the frames