

Optimally Combining the Hanford Interferometer Strain Channels - II

Albert Lazzarini LIGO Laboratory Caltech

S. Bose, P. Fritschel, M. McHugh, T. Regimbau, K. Reilly, J.D. Romano J.T. Whelan, S. Whitcomb, B. Whiting

> LSC Meeting LIGO Livingston Observatory 18 March 2004

LIGO-G040056-00-Z

Motivation

(Review of Nov/Dec 2003 talks)

- The S1 stochastic analysis exposed environmental correlations between H1 (4 km) and H2 (2 km) interferometers
 - » Precluded use of H1-H2 for setting an upper limit on the stochastic background
 - » Made combining the H1-L1 and H2-L1 results potentially tricky due to the known H1-H2 correlations
 - H1-L1 and H2-L1 measurements made when the other interferometer was not operating may be added assuming no correlations between the measurements
 - see original Allen&Romano paper -- PRD 59 (1999) 102001
 - 2X measurements made during periods of 3X coincident operation *in general* cannot be combined in this way -- subject of this talk (~73% of H1L1 for S2)
 - see http://www.ligo.caltech.edu/docs/T/T030250-13.pdf
 - also submitted LSC editorial review for PRD publication
 - » This talk is a extension to Nov. LSC (G030553-01), GWDAW(G030636-01) presentations

LIGO-G040056-00-Z

LIGO Optimally using the H1-H2-L1 data for stochastic background measurements

• Idea:

- » Take advantage of the geometrical alignment and co-location of the two Hanford interferometers
 - GW signature in two data streams guaranteed to be identically imprinted to high accuracy
 - Coherent, time-domain mixing of the two strain channels possible
 - (i) Form an *h* pseudo-channel that is an efficient estimator of GW strain (previous talks)
 - (ii) Also form a *null* channel that cancels GW signature (this talk)
 - Can be used to provide "off-source" background measurement
- » Hanford *pseudodetector* **h** channel takes into account local instrumental and environmental correlations
- » Then use the *pseudodetector* channels in the transcontinental cross-correlation measurement
- » Naturally combines three interferometer datastreams to produce a single H-L estimate
- Assumes:
 - » No sources of broadband correlations between LIGO sites
 - Supported by S1, S2 long-term coherence measurements*
 - Except for very narrow lines related to GPS timing and DAQS
 - Local H1-H2 coherence is dominated by environment, instrumental noise
 - Supported by character, magnitude of the H1H2 coherence measurements during S1, S2
 - Turns out that so long as H1 and H2 calibrations are accurate linearly melding H1 + H2 does not affect GW component

LIGO-G040056-00-Z

Optimal estimate of strain in the presence of instrumental correlations at Hanford

- Form linear combination of two interferometer signals: $\widetilde{s}_H(f) = \widetilde{\alpha}(f)\widetilde{s}_{H_1}(f) + (1 - \widetilde{\alpha}(f))\widetilde{s}_{H_2}(f)$
- s_H is an *unbiased* estimate of h:

$$\langle \widetilde{h}^*(f) \ \widetilde{s}_H(f') \rangle = P_{\Omega}(f)\delta(f-f')$$

• Require s_H to have *minimum* variance:

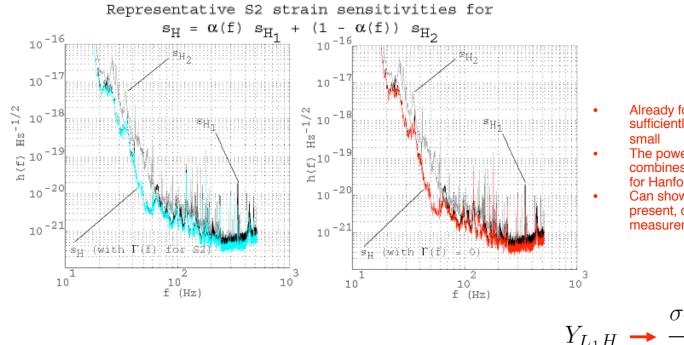
$$\langle \widetilde{s}_{H}^{*}(f) \widetilde{s}_{H}(f') \rangle = P_{H}(f) \delta(f - f') \frac{\partial P_{H}(f)}{\partial \widetilde{\alpha}(f)} = 0$$

Solution

$$\widetilde{\alpha}(f) = \frac{P_{H_2}(f) - \rho_{H_1H_2}(f)\sqrt{P_{H_1}(f)P_{H_2}(f)}}{P_{H_1}(f) + P_{H_2}(f) - (\rho_{H_1H_2}(f) + \rho^*_{H_1H_2}(f))\sqrt{P_{H_1}(f)P_{H_2}(f)}}$$
$$P_{H}(f) = \frac{P_{H_1}(f)P_{H_2}(f)(1 - \Gamma(f))}{P_{H_1}(f) + P_{H_2}(f) - (\rho_{H_1H_2}(f) + \rho^*_{H_1H_2}(f))\sqrt{P_{H_1}(f)P_{H_2}(f)}}$$

LIGO-G040056-00-Z

Results from S2 representative spectra



Already for S2, the H1-H2 coherence is sufficiently low that the effect of
$$\Gamma$$
->0 is very small

- The power of the technique is that it optimally combines two time series into a single series for Hanford
- Can show that if there are no correlations present, can also combine independent measurements according to their variances:

$$f_{L_1H} \rightarrow \frac{\sigma_{Y_{L_1H_1}}^{-2} Y_{L_1H_1} + \sigma_{Y_{L_1H_2}}^{-2} Y_{L_1H_2}}{\frac{1}{\sigma_{L_1H_1}^2} + \frac{1}{\sigma_{L_1H_2}^2}}$$
for Γ ->0

LIGO-G040056-00-Z

LSC Meeting 2004.03.15-18

NEW Null GW channel derived from the two of Hanford strain channels

Use s_H to cancel h in individual channels, s_{H1,2}

 $\widetilde{z}_{H_1}(f) = \widetilde{s}_{H_1}(f) - \widetilde{s}_H(f)$ $\widetilde{z}_{H_2}(f) = \widetilde{s}_{H_1}(f) - \widetilde{s}_H(f)$

$$\widetilde{z}_{H_1}(f) = (1 - \widetilde{\alpha}(f)) [\widetilde{n}_1(f) - \widetilde{n}_2(f)]$$

$$\widetilde{z}_{H_2}(f) = \widetilde{\alpha}(f) [\widetilde{n}_1(f) - \widetilde{n}_2(f)]$$

$$\begin{split} \widetilde{\mathbf{C}}_{z}(f)\delta(f-f') &= \begin{bmatrix} \langle \widetilde{z}_{H_{1}}^{*}(f)\widetilde{z}_{H_{1}}(f') \rangle & \langle \widetilde{z}_{H_{2}}^{*}(f)\widetilde{z}_{H_{2}}(f') \rangle \\ \langle \widetilde{z}_{H_{2}}^{*}(f)\widetilde{z}_{H_{1}}(f') \rangle & \langle \widetilde{z}_{H_{2}}^{*}(f)\widetilde{z}_{H_{2}}(f') \rangle \end{bmatrix} \\ &= \langle (\widetilde{n}_{1}^{*}(f) - \widetilde{n}_{2}^{*}(f))(\widetilde{n}_{1}(f') - \widetilde{n}_{2}(f')) \rangle \begin{bmatrix} (1 - \widetilde{\alpha}(f))(1 - \widetilde{\alpha}^{*}(f)) & -\widetilde{\alpha}(f)(1 - \widetilde{\alpha}^{*}(f)) \\ -\widetilde{\alpha}^{*}(f)(1 - \widetilde{\alpha}(f)) & \widetilde{\alpha}(f)\widetilde{\alpha}^{*}(f) \end{bmatrix} \\ &= \begin{bmatrix} (1 - \widetilde{\alpha}(f))(1 - \widetilde{\alpha}^{*}(f)) & -\widetilde{\alpha}(f)(1 - \widetilde{\alpha}^{*}(f)) \\ -\widetilde{\alpha}^{*}(f)(1 - \widetilde{\alpha}(f)) & \widetilde{\alpha}(f)\widetilde{\alpha}^{*}(f) \end{bmatrix} \times & \bullet & \mathsf{NO} \mathsf{P}_{\Omega} \, \mathsf{dependence} \, ! \\ & \left(\mathsf{P}_{H_{1}}(f) + \mathsf{P}_{H_{2}}(f) - (\mathsf{P}_{H_{1}H_{2}}(f) + \mathsf{P}_{H_{2}H_{1}}(f)) \right) \delta(f - f') \end{split}$$

LIGO-G040056-00-Z

LSC Meeting 2004.03.15-18

LIGO Null GW channel derived from the two of Hanford strain channels (2)

- Diagonalization of C_z does not involve h
 - » C_z derived from single vector, {s_{H1}, s_{H2}} -> one non zero eigenvalue (corresponds to power in signal z_H):

$$P_{zH}(f) = \left(P_{H_1}(f) + P_{H_2}(f) - (\rho_{H_1H_2}(f) + \rho^*_{H_1H_2}(f))\sqrt{P_{H_1}(f)P_{H_2}(f)} \right) \\ \times \left(1 - \tilde{\alpha}^*(f) - \tilde{\alpha}(f) + 2\tilde{\alpha}^*(f)\tilde{\alpha}(f) \right)$$

» Corresponding eigenvector:

$$\widetilde{z}_{H}(f) = -(\widetilde{n}_{H_{1}}(f) - \widetilde{n}_{H_{2}}(f)) \sqrt{1 - \widetilde{\alpha}(f) - \widetilde{\alpha}^{*}(f) + 2|\widetilde{\alpha}(f)|^{2}} \\ = -(\widetilde{s}_{H_{1}}(f) - \widetilde{s}_{H_{2}}(f)) \sqrt{1 - \widetilde{\alpha}(f) - \widetilde{\alpha}^{*}(f) + 2|\widetilde{\alpha}(f)|^{2}}.$$

» $z_H \propto [s_{H1} - s_{H2}] \ge g(\alpha(f))$

- filter function g reduces $Var(z_H)$ below $Var(s_{H1} - s_{H2})$

LIGO-G040056-00-Z

LSC Meeting 2004.03.15-18

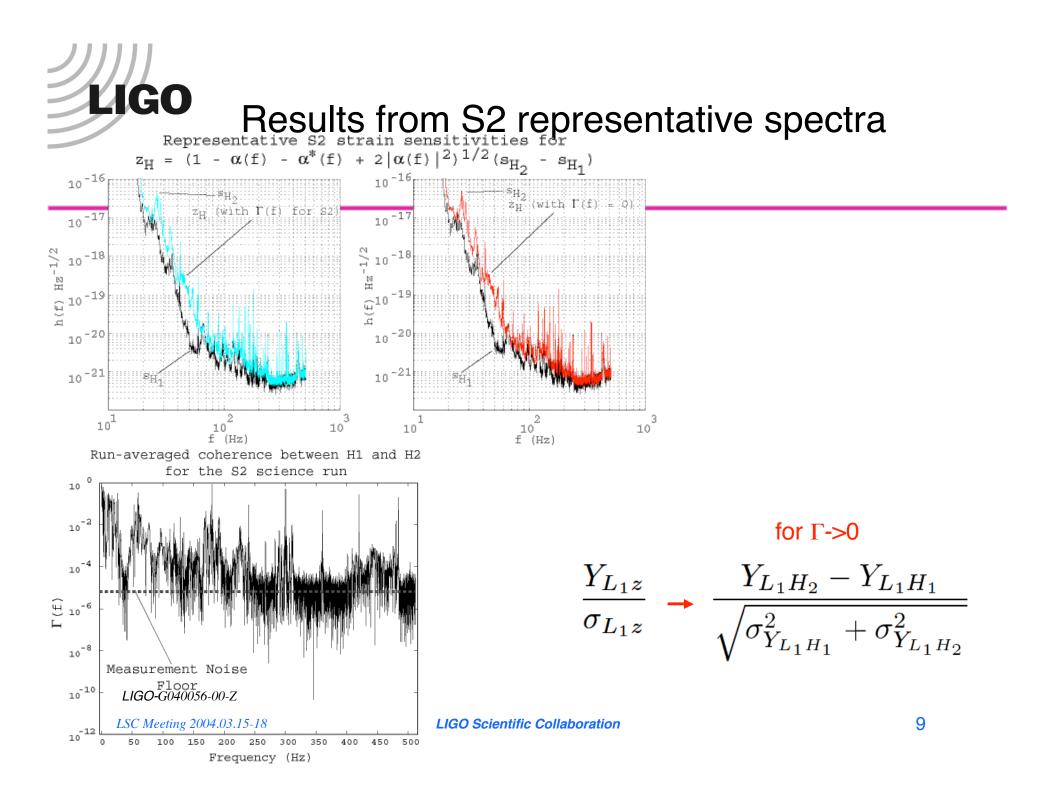
LIGO Null GW channel derived from the two of Hanford strain channels (3)

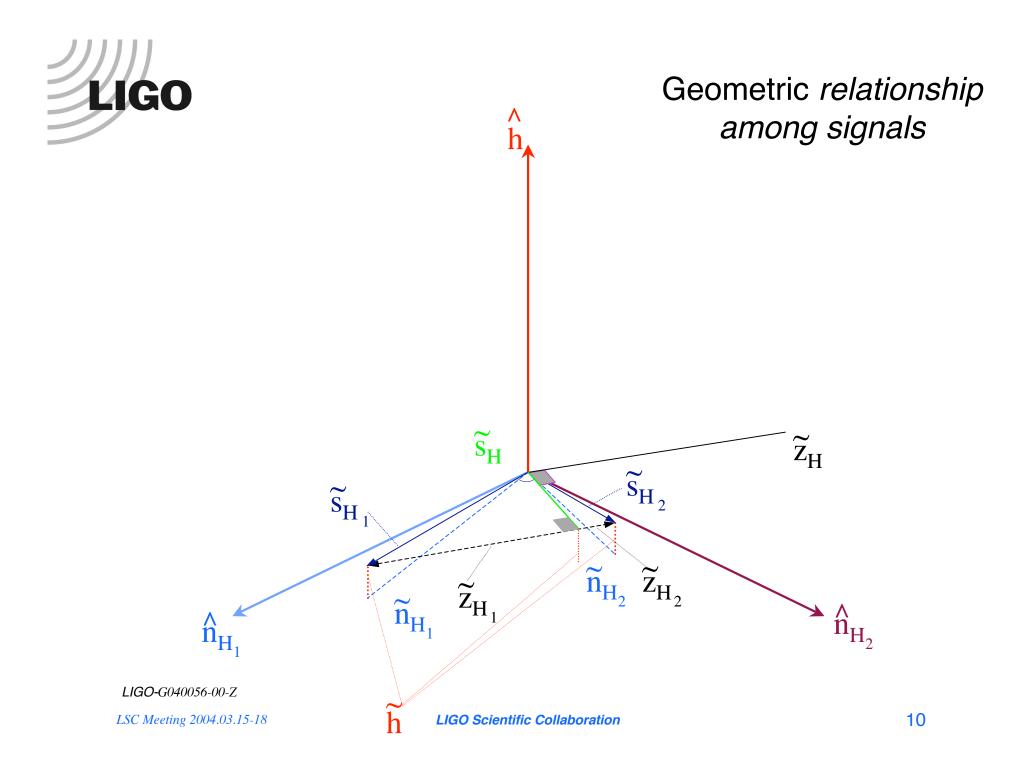
For
$$\Gamma$$
-> 0,
 $\widetilde{z}_{H}(f) = (s_{H_{2}}(f) - s_{H_{1}}(f)) \frac{\sqrt{P_{H_{1}}^{2}(f) + P_{H_{2}}^{2}(f)}}{P_{H_{1}}(f) + P_{H_{2}}(f)}$
 $P_{z_{H}}(f) = \frac{P_{H_{1}}^{2}(f) + P_{H_{2}}^{2}(f)}{P_{H_{1}}(f) + P_{H_{2}}(f)} \le P_{H_{1}}(f) + P_{H_{2}}(f)$
 $\le max[P_{H_{1}}(f), P_{H_{2}}(f)]$

NOTE -- $P_{zH}(f)$ is <u>always</u> less noisy than the noisier instrument

LIGO-G040056-00-Z

LSC Meeting 2004.03.15-18





Summary (1)

- It is possible to use the co-located/co-aligned H1/H2 interferometers in a fundamentally different manner than was done for S1
 - » We are a little smarter ...
- An optimal estimate of h can be obtained that is
 robust against local instrumental correlations
 - » Allows a consistent manner of combining H1, H2, L1 datastreams to obtain a single best upper limit on Ω
 - » Reduces to standard expression for uncorrelated measurements

LIGO-G040056-00-Z

Summary (2)

- There exists a <u>dual</u> to s_H-- null channel -- z_H <u>designed</u> not to contain GW signature
 - » Can be used for "off-source" null measurement as a calibration for "onsource" measurement
 - Analogous to rotated ALLEGRO+LLO technique
 - » Use of null channel can be generalized to other classes of searches
 - e.g., run inspiral search over $z_H \rightarrow$ if anything is seen, it can be used to veto same search over s_H
- Technique requires reasonably precise <u>relative</u> knowledge of H1, H2 calibrations
 - » Relative calibration errors between s_{H1}, s_{H2} will tend to average out in s_H
 - » Will tend to add in z_H
 - Leads to *leakage* of h into z_H
 - Relative calibration error +/- ϵ (f) leakage into z_{H} :
 - $\delta h(f) \sim 2 \epsilon(f) h(f)$ in *amplitude* and $\delta P_{\Omega}^{\Box}(f) \sim 4 \epsilon(f) l^2 P_{\Omega}(f)$ in *power*
 - » Event at threshold at ρ_* in $s_H \rightarrow 2l\epsilon l \rho_*$ in z_H
 - For reasonable ϵ and $~\rho_{\star},$ signal in z_{H} will be at or below threshold.

LIGO-G040056-00-Z

LSC Meeting 2004.03.15-18

Summary (3) Application to S1 results

Summary of combined H1L1 and H2L1 S1 results

	Quantity	Value	Quantity	Value
	$\Omega_{L_1H_1}$	31.6	$\sigma_{L_1H_1}$	17.8
	$\Omega_{L_1H_2}$	0.16	$\sigma_{L_1H_2}$	18.2
	$\Omega_{LH} =$		$\sigma_{LH} =$	
	$\left(\frac{\sigma_{Y_{L_{1}H_{1}}}^{-2}\Omega_{L_{1}H_{1}}+\sigma_{\Omega_{L_{1}H_{2}}}^{-2}Y_{L_{1}H_{2}}}{\frac{1}{\sigma_{L_{1}H_{1}}^{2}}+\frac{1}{\sigma_{L_{1}H_{2}}^{2}}}\right)$	16.1	$\frac{1}{\sqrt{\frac{1}{\sigma_{L_1H_1}^2} + \frac{1}{\sigma_{L_1H_2}^2}}}$	12.7
	Symmetric Bound	$-4.9 \le \Omega_{LH} \le 37.2$		90% CL
	Upper Limit		$\Omega_{LH} \le 32.4$	90% CL
vs.	Difference, $\Delta \Omega =$		$\sigma_\Delta =$	
	$\left(\Omega_{L_1H_2}-\Omega_{L_1H_1} ight)$	-31.4	$\sqrt{\sigma_{L_1H_1}^2+\sigma_{L_1H_2}^2}$	25.5
	$\xi_\Omega = rac{\Delta\Omega}{\sigma_\Delta}$	-1.23	Prob $\xi \leq \xi_{\Omega} $	0.78

LIGO-G040056-00-Z

LSC Meeting 2004.03.15-18