

Excess power method in wavelet domain for burst searches (WaveBurst)

S.Klimenko

University of Florida

- Introduction
- Wavelets
- Time-Frequency analysis
- Coincidence
- Statistical approach
- Results for S2 playground data
- Simulation
- Summary

LIGO Newton-Einstein Theory of Gravitation

Newton's Theory
1666
"instantaneous action at a
distance"
Newton's laws

Einstein's Theory
1915
"gravitational field action
propagates at the speed of light"

$$G + \Lambda g = 8\pi (G_N/c^4)T$$

G is the Einstein tensor

T is the stress-energy tensor

gravitational waves

- time dependent gravitational fields come from the acceleration of masses and propagate away from their sources as a spacetime warpage at the speed of light
- •In the weak-field limit, linearize the equation in "transversetraceless gauge"

$$\nabla^2 h - \frac{\partial^2 h}{c^2 \partial t^2} = 16\pi \frac{G_N}{c^4} T$$

gravitational radiation binary inspiral of compact objects

where $h_{\mu\nu}$ is a small perturbation of the space-time metric

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

GW strength

- •Quadrupole radiation
 - >monopole forbidden by conservation of E
 - >dipole forbidden by mom. conservation

$$h \approx \frac{G_N}{c^4} \frac{\ddot{Q}}{r}$$

•For highly non-spherical source, like binary system with mass M and separation L

$$Q \approx ML^2$$

$$1 \text{ pc} = 3 \times 10^{16} \text{ m}$$

- •solar mass neutron stars
 - >"Solar system" (1au) h~10⁻8
 - **►Milky Way (20kpc)** h~10⁻¹⁷
 - >Virgo cluster (15Mpc) h~10⁻²⁰
 - >"Deep space" (200Mpc) h~10⁻²¹
 - ► Habble distance (3000Mpc) h~10⁻²²

Astrophysical Sources

- Compact binary inspiral: "chirps"
 - > waveforms are quite well described. Search with match filters.
- Pulsars: "periodic"
 - > GW from observed neutron stars (doppler shift)
 - > all sky search
- Cosmological Signals "stochastic"
 - > x-correlation between several GW detectors
- Supernovae / GRBs/ BH mergers/...: "bursts"
 - triggered search coincidence with GRB/neutrino detectors
 - > un-triggered search coincidence of GW detectors

GW interferometers

Detection confidence

Direction to sources

LIGO observatory

Bursts

Sources:

- >Any short transient of gravitational radiation.
- >Astrophysically motivated
 - > Unmodeled signals -- Gamma Ray Bursts, ...
 - >"Poorly modeled" -- supernova, inspiral mergers
- Analysis goals:
 - > Establish a bound on rates
 - **≻GW** burst detection
- Search methods
 - > Excess power in time-frequency domain
 - >Sudden change of the noise parameters, rise-time in time domain
- In all cases: coincident observations among multiple GW detectors or with external triggers (GRBs, neutrinos).

$$UL \propto \frac{N}{\varepsilon(h)T}$$

N: number observed events

ε(h): detection efficiency

T: observation time

Supernova

Asymmetric core collapse

• Exact waveforms are not known, but any information (like signal duration) could be valuable for the analysis (classification of the waveforms)

Supernova rate

SN Rate

1/50 yr -Milky Way

3/yr - out to Virgo cluster

Inspiral Mergers

Compact binary mergers

• Expected merger detection rate ~40 higher then inspiral rate

Flanagan, Hughes: gr-qc/9701039v2 1997

- 10Mo<M<200Mo (LIGO-I) 100Mo<M<400Mo (LIGO-II)</p>
 - 0.1-10 events/year → very promising analysis

S2 LIGO Sensitivity

Strain Sensitivities for the LIGO Interferometers for S2

- Sensitive to bursts in
 - ➤ Milky Way
 - Magellanic Clouds
 - > Andromeda
 - **>**

time-frequency analysis

- Classify the GW "ecological calls"
- Detect bursts with generic T-F properties in each class.
- Characterize by "strength", duration, frequency band,...

Wavelet basis

- basis $\{\Psi(t)\}$:
 - bank of template waveforms
 - $\triangleright \Psi_0$ -mother wavelet
 - > a=2 stationary wavelet

$$\Psi_{jk} = a^{j/2} \Psi_0 \left(a^j t - k \right)$$

wavelet - natural basis for bursts fewer functions are used for signal approximation - closer to match filter

Wavelet Transform

decomposition in basis $\{\Psi(t)\}$

a. wavelet transform tree

b. wavelet transform binary tree

UGO Wavelet time-scale(frequency) spectrogram

WaveBurst allows different tiling schemes including linear and dyadic wavelet scale resolution. for this plot linear scale resolution is used (Δf=const)

TF resolution

- depend on what nodes are selected for analysis
 - dyadic wavelet functions
 - wavelet packet linear combination

 - ➤ multi-resolution → select significant pixels searching over all nodes and "combine" them into clusters.

Response to sine-gaussian signals

WaveBurst analysis method

detection of excess power in wavelet domain

- use wavelets
 - > flexible tiling of the TF-plane by using wavelet packets
 - > variety of basis waveforms for bursts approximation
 - ▶ low spectral leakage
 - > wavelets in DMT, LAL, LDAS: Haar, Daubechies, Symlet, Biorthogonal, Meyers.
- use rank statistics
 - > calculated for each wavelet scale
 - > robust
- use local T-F coincidence rules
 - > coincidence at pixel level applied before triggers are produced
 - > works for 2 and more interferometers

Analysis pipeline

bp

 \rightarrow selection of loudest (black) pixels (black pixel probability $P\sim10\%$ - 1.64 GN rms)

Coincidence

• Given local occupancy P(t,f) in each channel, after coincidence the black pixel occupancy is $P_C(t,f) \propto P^2(t,f)$

for example if P=10%, average occupancy after coincidence is 1%

• can use various coincidence policies \rightarrow allows customization of the pipeline for specific burst searches.

LIGO Cluster Analysis (independent for each IFO)

cluster → T-F plot area with high occupancy

Cluster Parameters

size – number of pixels in the core

volume - total number of pixels

density - size/volume

amplitude – maximum amplitude

power - wavelet amplitude/noise rms

energy - power x size

asymmetry - (#positive - #negative)/size

confidence - cluster confidence

neighbors - total number of neighbors

frequency - core minimal frequency [Hz]

band - frequency band of the core [Hz]

- GPS time of the core beginning

duration - core duration in time [sec]

Statistical Approach

- statistics of pixels & clusters (triggers)
- parametric
 - Gaussian noise
 - pixels are statistically independent
- non-parametric
 - > pixels are statistically independent
 - based on rank statistics:

data:
$$\{x_i\}$$
: $|x_{k1}| < |x_{k2}| < ... < |x_{kn}|$
rank: $\{R_i\}$: n n-1

$$y_i = \eta(R_i) \cdot u(x_i)$$
 η - some function u - sign function

example: Van der Waerden transform, $R \rightarrow G(0,1)$

non-parametric pixel statistics

calculate pixel likelihood from its rank:

$$y_i = -\ln\left(\frac{R_i}{nP}\right) \cdot \mathbf{u}(x_i)$$

- Derived from rank statistics → non-parametric
- likelihood pdf exponential

LIGO statistics of filter noise (non-parametric)

non-parametric cluster likelihood

$$Y_k = -\sum_{i=0}^k \ln\left(\frac{R_i}{nP}\right)$$

 sum of k (statistically independent) pixels has gamma distribution

statistics of filter noise (parametric)

- x: assume that detector noise is gaussian
- y: after black pixel selection $(|x|>x_p) \rightarrow$ gaussian tails
- Y_k : sum of k independent pixels distributed as Γ_k

cluster confidence: C = -ln(survival probability)

$$C(Y_k) = -\ln\left(\frac{1}{\Gamma(k)} \int_{Y_k}^{\infty} x^{k-1} e^{-x} dx\right)$$

• pdf(C) is exponential regardless of k.

Coincidence Rates

double coincidence samples (S2 playground)

<u> </u>		(F	<i>j</i>
ifo pair	L1-H1	H1-H2	H2-L1
triggers	29346	22469	36956
lock,sec	94652	98517	93699
rate, Hz	0.31	0.23	0.39

off-time samples are produced during the production stage independent on GW samples

raw triple coincidence rates

triple coincidence: time window: 20 ms

frequency gap: 0 Hz

 \rightarrow 1.10 ± 0.04 mHz

• expect reduce background down to <20 μHz using postprocessing selection cuts: triple event confidence, veto, ...

"BH-BH merger" band

off-time triple coincidence sample

expect BH-BH mergers (masses >10 Mo) in frequency band <1 kHz (BH-BH band)

background of 0.15 ± 0.02 mHz

expect <1 μHz after post-processing cuts

confidence of triple coincidence event

"arithmetic"

 $AC = (C_{L1} + C_{H1} + C_{H2})/3$

"geometric"

$$GC = (C_{L1} \cdot C_{H1} \cdot C_{H2})^{1/3}$$

Clean up the pipeline output by setting threshold on triple GC

VETO

- anti-coincidence with environmental & control channels
 - > 95% of LIGO data
- generated with GlitchMon and WaveMon (DMT monitors)

LIGO veto system is working!

address veto safety issue before use in the analysis

WaveBurst false alarm summary

- expect reduce background down to
 - > <10 µHz for frequency band of 64-4096 Hz
 - > 1 µHz for frequency band of 64-1024 Hz by using post-processing selection cuts:
 - > triple event confidence
 - > veto
- false alarm of 1 event per year is feasible with the use of the x-correlation cut.
- expect <1 background events for all S2 (no veto)
- → WaveBurst is low false alarm burst detection pipeline
- What is the pipeline sensitivity?

Simulation

- hardware injections
- software injection into all three interferometers:
 - waveform name
 - GPS time of injection
 - $\geq \{\theta, \varphi, \Psi\}$ source location and polarization angle
 - T {L1,H1,H2} LLO-LHO delays
 - > F+{L1,H1,H2} + polarization beam pattern vector
 - > Fx {L1,H1,H2} x polarization beam pattern vector
- use exactly the same pipeline for processing of GW and simulation triggers.
- sine-Gaussian injections
 - > 16 waveforms: 8-Q9 and 8-Q3
 - > F+ {1,1,1}, Fx {0,0,0}
- BH-BH mergers (10-100 Mo)
 - > 10 pairs of Lazarus waveforms {h+,hx}

 $Q = \sqrt{2\pi\tau f_0}$

τ -duration

 f_0 -central frequency

hardware injections

SG injections [100Hz, 153Hz , 235Hz, 361Hz, 554Hz, 850Hz, 1304Hz 2000Hz]

good agreement between injected and reconstructed hrss good time and frequency resolution

H1H2 pair

detection efficiency vs hrss

 $4-5\cdot 10^{-21} \frac{strain}{\sqrt{Hz}}$

@235 Hzrobustwith respectto waveform Q

fo, Hz	100	153	235	361	554	850	1034	2000	
h50%, Q9	40.	20.	4.8	7.5	7.2	_	16.	-	$x10^{-2}$
h50%, Q3	36.	14.	6.0	6.6	8.6	10.	17.	30.	$x10^{-2}$
,									

timing resolution

S2 playground simulation sample

time window >= 20 ms →
 negligible loss of simulated events (< 1%)

Signal reconstruction

 Use orthogonal wavelet (energy conserved) and calibration.

mean amplitude

frequency

BH-BH merger injections

• BH-BH mergers (Flanagan, Hughes: gr-qc/9701039v2 1997)

duration:
$$\tau \approx 50M = 5ms \cdot \left(\frac{M}{20M_o}\right)$$

start frequency:
$$f_{start} \approx \left(\frac{0.02}{M}\right) = 205 Hz \cdot \left(\frac{20 M_o}{M}\right)$$

bandwidth:
$$\Delta f \sim f_{qnr} \approx \left(\frac{0.13}{M}\right) = 1300 Hz \cdot \left(\frac{20 M_o}{M}\right)$$

Lazarus waveforms
 (J.Baker et al, astro-ph/0202469v1)
 (J.Baker et al, astro-ph/0305287v1)

all sky simulation using two polarizations and L & H beam pattern functions

Lazarus waveforms: efficiency

all sky search: hrss(50%) $\sim 2 \cdot 10^{-20} \frac{strain}{\sqrt{Hz}}$

mass, Mo									100
hrss(50%) x 10 ⁻²⁰	4.5	2.4	2.0	1.8	1.5	1.7	2.2	3.4	7.1

• expected BH-BH frequency band – 100-1000 Hz

WaveBurst pipeline status

- WaveBurst ETG: stable, fully operational, tuned
- S2 production: complete (Feb 8), ready to release triggers
- Post-production
 - time, frequency coincidence: fully operational, tuned
 - trigger selection: fully operational, tuned
 - off-time analysis: ready to go
- VETO analysis
 - feasible, good veto efficiency (87%)
 - need to finish production of WaveMon H1 and H2 triggers
 - requires cleaning-up veto sample and some tuning to reduce DTF
 - address more accurate veto safety with software injections
- Simulation
 - All sky SG,BH-BH mergers, Gaussians: complete

ready to produce S2 result before the LSC meeting

Summary

- WaveBurst -low false alarm burst detection by using
 - Wavelet transform with low spectral leakage
 - TF coincidence at pixel level
 - Non-parametric statistics
 - Combined triple event confidence
 - Efficient VETO analysis
- at the same time maintaining high detection efficiency