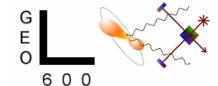

Searching for periodic gravitational waves with LIGO: S2 and beyond

Réjean J Dupuis University of Glasgow

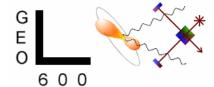
LIGO Scientific Collaboration

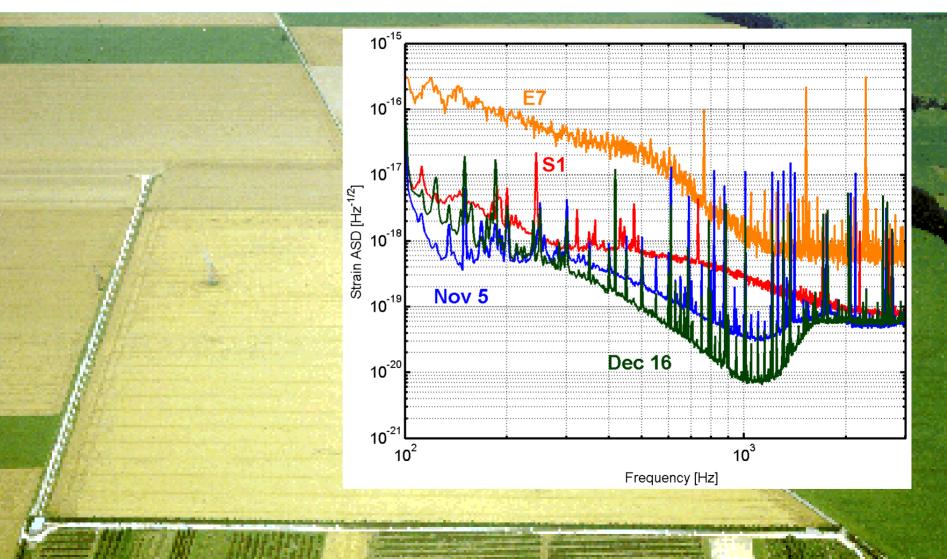
LIGO Seminar
10 February 2004



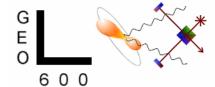
Summary

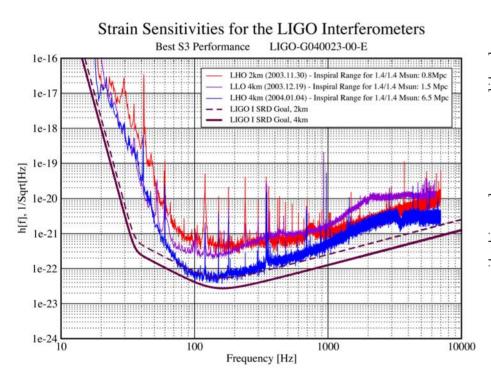
- S1 data run took 17 days of data (Aug 23 Sept 9, 2002) on 4 detectors (GEO600, LIGO H1, H2, and L1)
 - Upper limit set for GWs from J1939+2134 using two separate methods:
 - Frequency-domain analysis
 - Time-domain Bayesian analysis: h₀ < 1.4 x 10⁻²²
 - Preprint available as gr-qc/0308050; Accepted by PRD.
- End-to-end validation of analysis method completed during S2 by injecting fake pulsars signals directly into LIGO IFOs
- S2 data run took 2 months of data (Feb 14 Apr 14, 2003)
 - Upper limits set for GWs from 28 known isolated pulsars
 - Special treatment for Crab pulsar to take into account timing noise
 - All-sky searches are in progress
- With S3 we should be able to set astrophysically interesting upper limits for a few pulsars

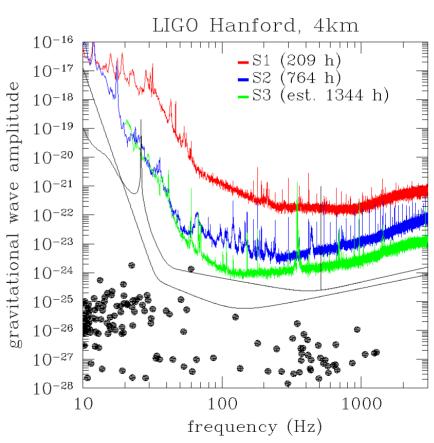


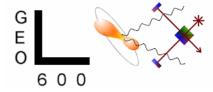

Outline of talk

- 1. Status of GEO 600 and LIGO
- 2. Nature of gravitational wave signal from pulsars
- 3. Review of Bayesian time domain analysis
- 4. Validation using hardware injections in LIGO
- Preliminary results using LIGO S2 data
- Plans for the future

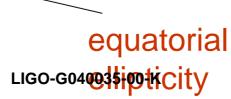


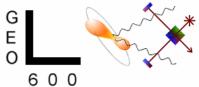



GEO 600



GWs from asymmetric pulsar

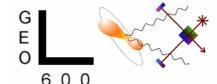

- Spherically symmetric neutron stars will not emit gravitational waves
- Ellipticity, ε, measures asymmetry in triaxially shaped pulsar.


Equatorial ellipticity:

$$\varepsilon = \frac{I_{xx} - I_{yy}}{I_{zz}}$$

$$h_0 = \frac{16\pi^2 G}{c^4} \frac{I_{zz} f_0^2}{R} \mathcal{E} \blacktriangleleft$$

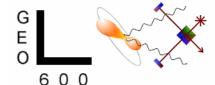
R (neutron star ellipticity not to scale!)


Nature of gravitational wave signal

The GW signal from a triaxial neutron star can be modelled as

$$h(t) = \frac{1}{2} F_{+}(t) h_{0}(1 + \cos^{2} t) \cos \Phi(t) - F_{\times}(t) h_{0}(\cos t) \sin \Phi(t)$$

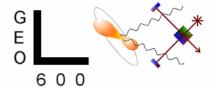
- Simply Doppler modulated sinusoidal signal (at twice the pulsar rotation rate) with an envelope that reflects the antenna pattern of the interferometers.
- The unknown parameters are
 - h₀ amplitude of the gravitational wave signal
 - ψ polarization angle of signal; embedded in F_x, +
 - *t* inclination angle of the pulsar wrt line of sight
 - ϕ_0 initial phase of pulsar $\Phi(0)$


Time domain method

- For known pulsars the phase evolution can be removed by heterodyning to dc.
 - Heterodyne (multiply by e^{-i Φ(t)}) calibrated time domain data from detectors.
 - This process reduces a potential GW signal h(t) to a slow varying complex signal y(t) which reflects the beam pattern of the interferometer.
 - By means of averaging and filtering, we calculate an estimate of this signal y(t) every 40 minutes (changeable) which we call B_k.
- The B_k's are our data which we compare with the model

$$y(t) = \frac{1}{4} F_{+}(t) h_{0} (1 + \cos^{2} \iota) e^{i2\phi_{0}} - \frac{i}{2} F_{\times}(t) h_{0} (\cos \iota) e^{i2\phi_{0}}$$

Details to appear in Dupuis and Woan (2004).

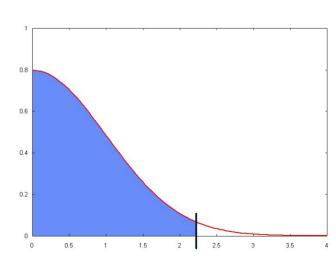


Bayesian analysis

$$p(\{B_k\}|\vec{a}) \propto \exp\left[-\sum_k \frac{\left|B_k - y(t_k;\vec{a})\right|^2}{2\sigma_k^2}\right] = \exp\left[-\chi^2/2\right]$$
B_k's are processed data noise estimate

 $p(\vec{a} | \{B_k\}) \propto p(\vec{a}) p(\{B_k\} | \vec{a})$ posterior
prior
likelihood

Bayesian upper limits

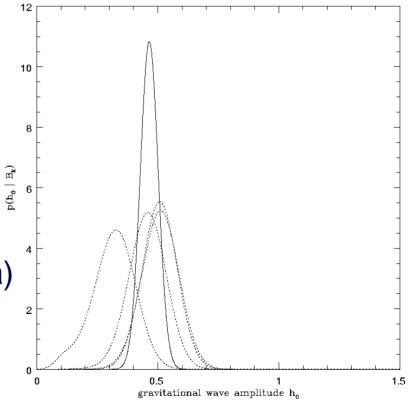

• Marginalize over the nuisance parameters $(\cos i, \phi_0, \psi)$ to leave the posterior distribution for the probability of h_0 given the data.

$$p(h_0 | \{B_k\}) \propto \iiint p(\varphi_0)p(\psi)p(\cos \iota)e^{-\chi^2/2}d\varphi_0d\psi d\cos \iota$$

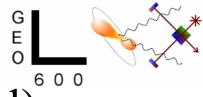
 We define the 95% upper limit by a value h₉₅ satisfying

$$0.95 = \int_0^{h_{95}} p(h_0 \mid \{B_k\}) dh_0$$

 Such an upper limit can be defined even when signal is present.

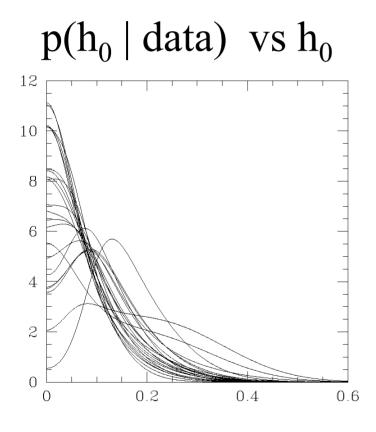


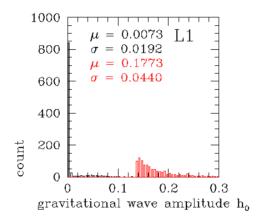
Coherent multi-detector analysis

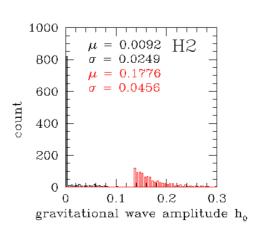

The combined posterior distribution from all the available interferometers comes naturally out of a Bayesian analysis, and for independent observations is simply the product of the contributing probability distributions:

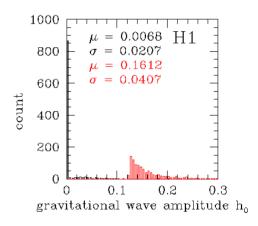
p(a|all data) ∝

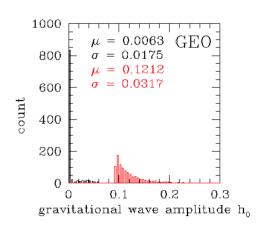
p(GEO|a) p(L1|a) p(H1|a) p(H2|a) p(a)

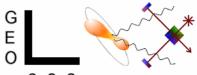





Repeated experiments (no signal)


1000 simulations with Gaussian noise for each IFO using S1 time stamps


- black bins represent the location of the peak
- red bins the location of h95



LIGO-G040035-00-K

S2 Pulsar Injection Parameters

Signal is sum of two different pulsars, P1 and P2

P1: Constant Intrinsic Frequency

Sky position: **0.3766960246** latitude (radians) **5.1471621319** longitude (radians)

Signal parameters are defined at SSB GPS time **733967667**.026112310 which corresponds to a wavefront passing:

LHO at GPS time 733967713.000000000

LLO at GPS time **733967713.007730720**

In the SSB the signal is defined by

f = 1279.123456789012 Hz

fdot = 0

0 = idq

 $A+ = 1.0 \times 10^{-21}$

Ax = 0 [equivalent to iota=pi/2]

P2: Spinning Down

Sky position: 1.23456789012345 latitude (radians)

2.345678901234567890 longitude (radians)

Signal parameters are defined at SSB GPS time:

SSB 733967751.522490380, which corresponds to a

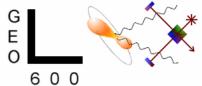
wavefront passing:

LHO at GPS time **733967713.000000000**

LLO at GPS time 733967713.001640320

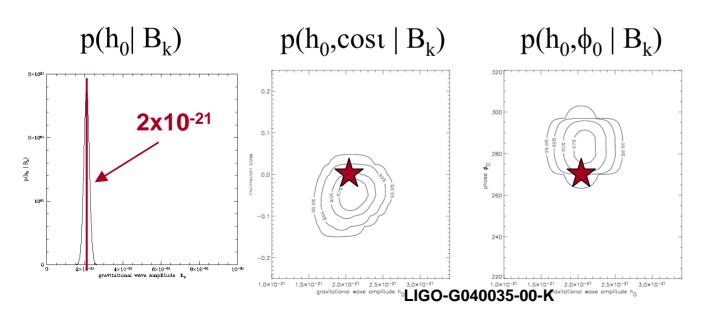
In the SSB at that moment the signal is defined by

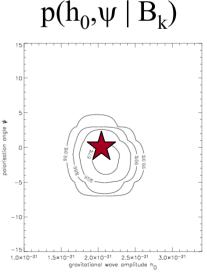
f=1288.901234567890123

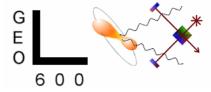

fdot = -10^{-8} [phase=2 pi (f dt+1/2 fdot dt^2+...)]

phi = 0

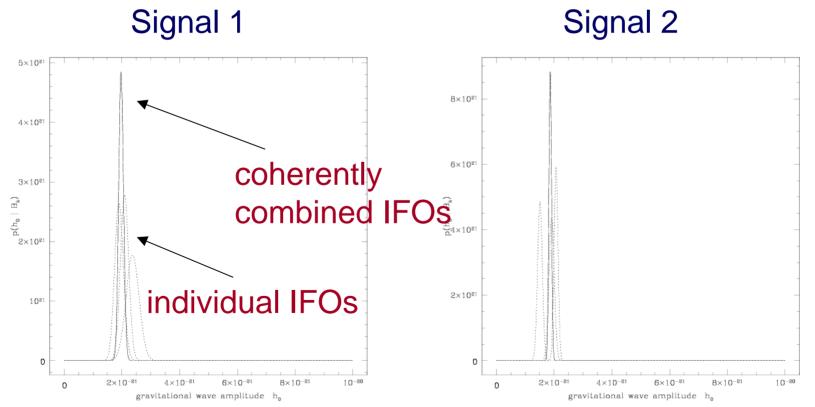
 $A + = 1.0 \times 10^{-21}$


Ax = 0 [equivalent to iota=pi/2]



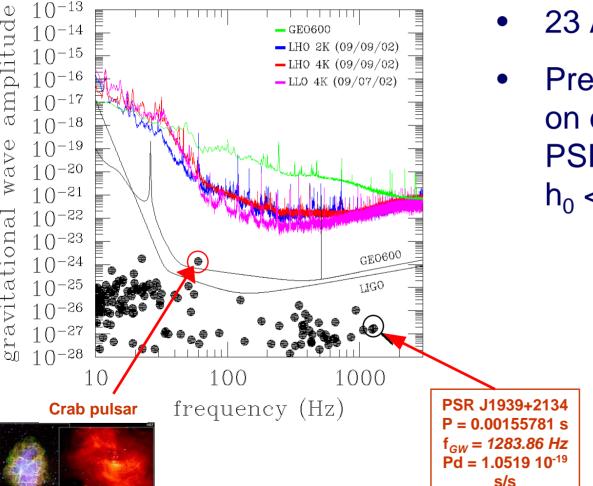

End-to-end validation

- Two simulated pulsars were injected in the LIGO interferometers for a period of ~ 12 hours during S2.
- All the parameters of the injected signals were successfully inferred from the data.
- For example, the plots below show parameter estimation for Signal 1 that was injected into LIGO Hanford 4k.



Coherent multi-detector analysis

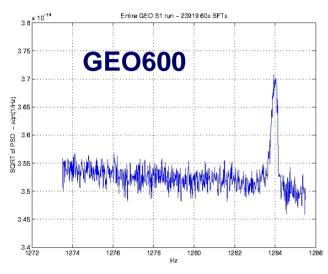
 A coherent analysis of the injected signals using data from all sites showed that phase was consistent between sites

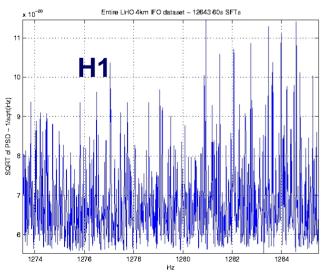


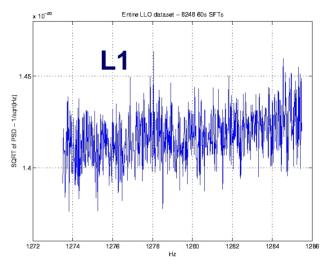
First science run (S1)

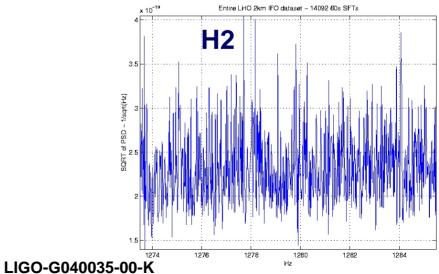
D = 3.6 kpc

LIGO-G040035-00-K

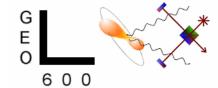


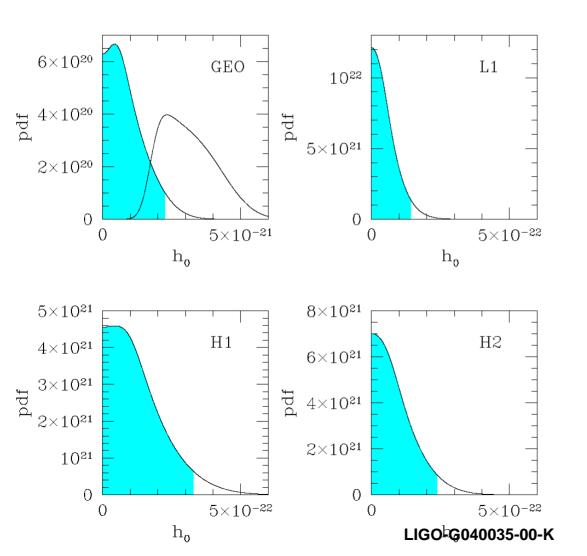

- 23 Aug 9 Sept 2002
- Previously published UL on emission from PSR1939+2134: h₀ < 10⁻²⁰ (Glasgow, 1983)

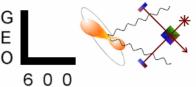




S1 data near 1284 Hz

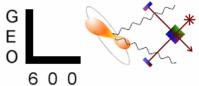






Results from S1 data

- •GEO 451 hours 95.7%
- $\bullet h_0^{95\%} < 2.2 \times 10^{-21}$
- dotted line represents signal injected at 2x10⁻²¹
- •L1 137 hours 35.6%
- $h_0^{95\%} < 1.4 \times 10^{-22}$
- •H1 209 hours 54.4%
- $h_0^{95\%} < 3.3 \times 10^{-22}$
- •H2 238 hours 62.0%
- $h_0^{95\%} < 2.4 \times 10^{-22}$

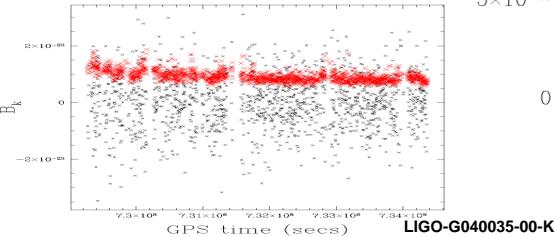

S2 known pulsar analysis

- Analyzed 28 known isolated pulsars with 2f_{rot} > 50 Hz.
 - Another 10 isolated pulsars are known with 2f_{rot} > 50 Hz but the uncertainty in their spin parameters is sufficient to warrant a search over frequency.
- Crab pulsar heterodyned to take timing noise into account.
- Total observation time:
 - 969 hours for H1 (Hanford, 4km)
 - 790 hours for H2 (Hanford, 2km)
 - 453 hours for L1 (Livingston, 4km)

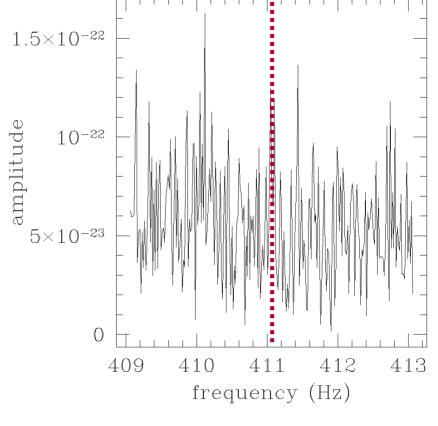
B0021-72C	B0531+21 (Crab)	J0711-6830	J1910-5959B
B0021-72D	B1516+02A	J1024-0719	J1910-5959C
B0021-72F	B1820-30A	J1629-6902	J1910-5959D
B0021-72G	B1821-24	J1721-2457	J1910-5959E
B0021-72L	B1937+21 (S1)	J1730-2304	J1913+1011
B0021-72M	B1951+32	J1744-1134	J2124-3358
B0021-72N	B0030+0451	J1748-2446C	J2322+2057 19

20

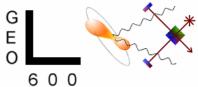
J0030+0451


 $f_{GW} \approx 411.1Hz$

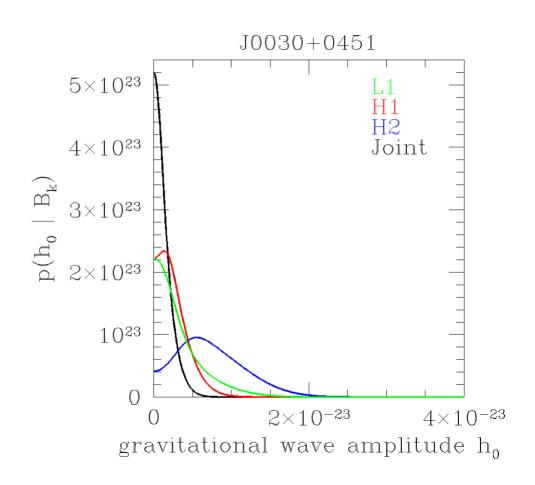
 $df_{GW} / dt \approx -8.4 \times 10^{-16} \text{ Hz/s}$

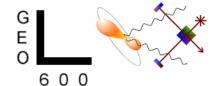

RA = 00:30:27.432

DEC = +04:51:39.7


B_k vs time; σ_k vs time

FFT of 4 Hz band centered on f_{GW}

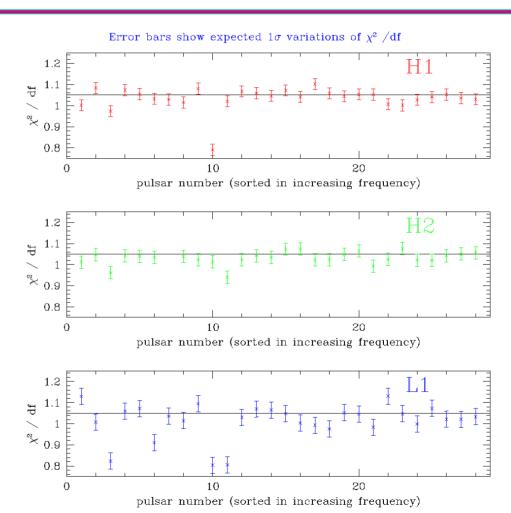




Pulsar J0030+0451 (cont'd)

- This is the closest pulsar in our set at a distance of 230 pc.
- 95% upper limits from individual IFOs for this pulsar are:
 - $L1: h_0 < 9.6 \times 10^{-24}$
 - H1: $h_0 < 6.1 \times 10^{-24}$
 - H2: $h_0 < 1.5 \times 10^{-23}$
- 95% upper limit from coherent multi-detector analysis is:
 - $-h_0 < 3.5 \times 10^{-24}$

Noise estimation

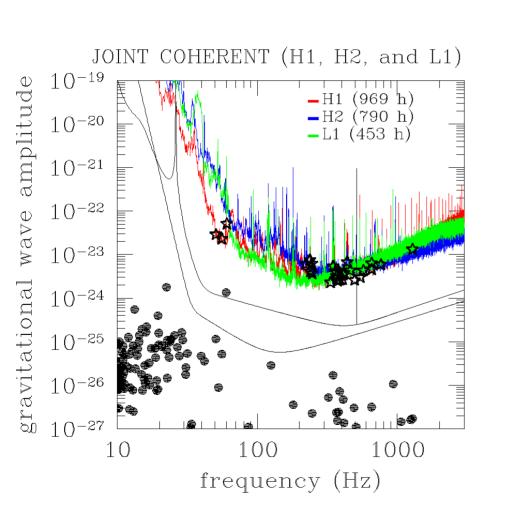

$$\chi^{2} = \sum_{k=1}^{M} \frac{\left| B_{k} - y(t_{k}; \vec{a}) \right|^{2}}{\sigma_{k}^{2}}$$

 $M = total number of B_k$'s (which are complex and estimated every 40 minutes).

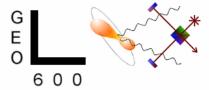
If we are properly modeling the noise, we would expect (from Student's t-distribution)

$$<\chi^2/(2M)> = \frac{n-1}{n-3} \approx 1.05$$

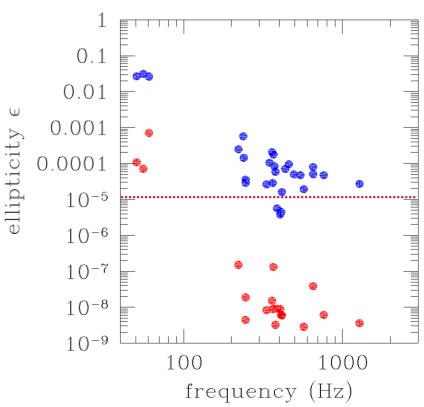
$$\operatorname{var}[\chi^2/(2M)] = \left(\frac{n-1}{n-3}\right)^2 \frac{2}{M}$$



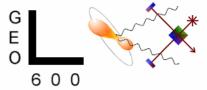
where n = 40 (n is the number of data points used to estimate σ_k). LIGO-G040035-00-K


Multi-detector upper limits

- Performed joint coherent analysis for 28 pulsars using data from all IFOs.
- Most stringent UL is for pulsar J1629-6902 (~333 Hz) where 95% confident that $h_0 < 2.3x10^{-24}$.
- 95% upper limit for Crab pulsar (~ 60 Hz) is $h_0 < 5.1 \times 10^{-23}$.
- 95% upper limit for J1939+2134 ($\sim 1284 \text{ Hz}$) is $h_0 < 1.3 \times 10^{-23}$.

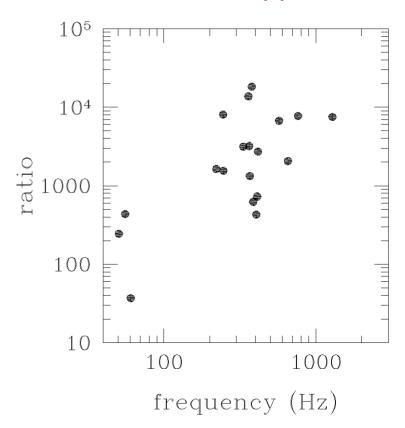

Upper limits on ellipticity

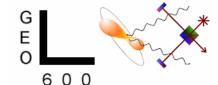
Equatorial ellipticity:


$$\varepsilon = \frac{I_{xx} - I_{yy}}{I_{zz}}$$

Pulsars J0030+0451 (230 pc), J2124-3358 (250 pc), and J1024-0719 (350 pc) are the nearest three pulsars in the set and their equatorial ellipticities are all constrained to less than 10⁻⁵.

- S2 upper limits
- Spin-down based upper limits




Approaching spin-down upper limits

- For Crab pulsar (B0531+21)
 we were still a factor of ~35
 above the spin-down upper
 limit in S2.
- Hope to reach spin-down based upper limit in S3!
- Note that not all pulsars analysed are constrained due to spin-down rates; some actually appear to be spinning-up (associated with accelerations in globular cluster).

Ratio of S2 upper limits to spindown based upper limits

Plans for the future

- Look for signals from all known pulsars which can be described with one template (the majority) including those in binary systems.
- Use Markov Chain Monte Carlo approach to extend the parameter space (frequency, spin-down). Search for signals from SN87A, Cas A, ...
- All sky searches are underway using S2 data.
- Einstein@home