

Coherent Coincident Analysis of LIGO Burst Candidates

Laura Cadonati

Massachusetts Institute of Technology

LIGO Scientific Collaboration

8th Gravitational Wave Data Analysis Workshop Milwaukee, Wisconsin, December 17-20, 2003

Post Coincidence Coherent Analysis

- Burst candidates separately identified in the data stream of each interferometer by the Event Trigger Generators (ETG): TFclusters, Excess Power, WaveBurst, BlockNormal
 - » Tuning maximizes detection efficiency for given classes of waveforms and a given false rate ~ 1-2 Hz
- Multi-interferometer coincidence analysis:
 - » Rule of thumb: detection efficiency in coincidence ~ product of efficiency at the single interferometers. Coincidence selection criteria should not further reduce the detection efficiency. The final false rate limits how loose the cuts can be.
 - » Currently implemented: <u>time</u> and <u>frequency</u> coincidence (in general, different tolerance for different trigger generators).
 - » Amplitude/energy cut: not yet implemented.
- Cross-Correlation for coherent analysis of coincident events
 - » This is a waveform consistency test.
 - » Allows suppression of false events without reducing the detection efficiency of the pipeline.

LIGO-G030691-00-Z

r-statistic Cross Correlation Test

For each triple coincidence candidate event produced by the burst pipeline (start time, duration ΔT) process pairs of interferometers:

Data Conditioning:

- » 100-2048 Hz band-pass
- » Whitening with linear error predictor filters

Partition the trigger in sub-intervals (50% overlap) of duration $\tau =$ integration window (20, 50, 100 ms). For each sub-interval, time shift up to 10 ms and build an r-statistic series distribution.

$$r_{k} = \frac{\sum_{i} (x_{i} - \overline{x})(y_{i+k} - \overline{y})}{\sqrt{\sum_{i} (x_{i} - \overline{x})^{2}} \sqrt{\sum_{i} (y_{i+k} - \overline{y})^{2}}}$$

If the distribution of the r-statistic is inconsistent with the no-correlation hypothesis: find the time shift yielding maximum correlation confidence $C_M(j)$ (j=index for the sub-interval)

C_M(j) plots

- Each point: max confidence $C_M(j)$ for an interval τ wide (here: τ = 20ms)
- Threshold on Γ:

2 interferometers:

$$\Gamma = \max_{j}(C_{M}(j)) > \beta_{2}$$

3 interferometers:

$$\Gamma = \max_{j} (C_{M}^{12} + C_{M}^{13} + C_{M}^{23})/3 > \beta_{3}$$

In general, we can have $\beta_2 \neq \beta_3$

 β_3 =3: 99.9% correlation probability in each sub-interval

Testing 3 integration windows: 20ms (Γ_{20}) 50ms (Γ_{50}) 100ms (Γ_{100}) in OR: Γ =max(Γ_{20} , Γ_{50} , Γ_{100})

LIGO

Triple Coincidence Performance Analysis in S2

Exploring the test performance for triple coincidence detection, independently from trigger generators and from previous portions of the analysis pipeline:

- Add <u>simulated events</u> to <u>real noise</u> at random times in the 3 LIGO interferometers, covering 10% of the S2 dataset (in LIGO jargon: triple coincidence playground)
- apply r-statistic test to 200 ms around the simulation peak time

Definition of quantities used to characterize a burst signal:

$$h_{rss} = \sqrt{\int_{0}^{\infty} |h(t)|^{2} dt} = \sqrt{\int_{-\infty}^{\infty} |\tilde{h}(f)|^{2} df}$$

Total energy in the burst (units: strain/rtHz) [directly comparable to sensitivity curves]

SNR =
$$\sqrt{2 \int_{0}^{\infty} \frac{|\tilde{h}(f)|^{2}}{S_{h}(f)}} df \approx \frac{h_{rss}}{\sqrt{S_{h}(f_{c})}}$$

SNR definition for excess-power techniques in the burst search = $SNR_{matched\ filtering}/\sqrt{2}$

For narrow-band bursts with central frequency $f_{\rm c}$

S_h(f)=single-sided reference noise in the S2 Science Run
⇒ reference S2 SNR for a given amplitude/waveform

LIGO

Detection Efficiency for Narrow-Band Bursts

Sine-Gaussian waveform f₀=254Hz Q=9 linear polarization, source at zenith

$$h(t) = h_{peak} \sin(2\pi f_0(t-t_0)) e^{-(t-t_0)^2/\tau^2} \quad Q = \sqrt{2}\pi\tau f_0$$

LIGO

Detection Efficiency for Broad-Band Bursts

Gaussian waveform τ=1ms linear polarization, source at zenith

$$h(t) = h_{peak} e^{-(t-t_0)^2/\tau^2}$$

 $h_{peak} = 1.6e-19 [strain]$ $h_{rss} = 5.7e-21 [strain/rtHz]$ SNR: LLO-4km=11.5 LHO-4km=6 LHO-2km=5

10⁻¹⁸ (f_{char}, hrss) [strain/rtHz] L1 noise [strain/sqrtHz] H1 noise [strain/sqrtHz] H2 noise [strain/sqrtHz] with 50% triple Single-sided noise spectrum sqrt(S_h(f))[strain/rtHz] simulated burst spectrum [strain/Hz] L1: (f_char,hrss) coincidence detection H1: (f char,hrss) H2: (f char,hrss) 10⁻¹⁹ probability Single sided h (f) [strain/Hz] LHO-4km 10⁻²¹ LHO-2kı LLO-4km $\sqrt{2}|\mathbf{h}(\mathbf{f})|$ [strain/Hz] 10³ frequency [Hz]

SNR =
$$\sqrt{2\int_{0}^{\infty} \frac{|\widetilde{h}(f)|^{2}}{S_{h}(f)}} df$$

R.O.C.

Receiver-Operator Characteristics

Detection Probability versus False Alarm Probability. Parameter: triple coincidence confidence threshold β_3

Simulated 1730 events at fixed h_{peak} , h_{rss} (10 events uniformly distributed in each S2 "playground" segment)

Tested cross correlation over 200 ms around the peak time

Operating condition: β_3 =3

chosen from first principles (99.9% correlation probability in each event sub-interval for a pair of interferometers), corresponds to a ~1% false alarm probability for triple coincidence events with duration 200 ms.

Suppression of Accidental Coincidences from the Pipeline

In general: depends on the Event Trigger Generator and the nature of its triggers.

In particular: typical distribution of event duration (larger

events have more integration windows). Shown here: TFCLUSTERS 130 - 400 Hz

(presented in Sylvestre's talk)

Triple Coincidence Playground. T=88800 s (24.7 hours)	Singles
LLO-4km (L1)	2.5 Hz
LHO-4km (H1)	2 Hz
LHO-2km (H2)	2 Hz

Coincident numbers reported here are averages of 6 background measurements:

LLO-LHO = ± 8 , ± 6 , ± 4 sec (H1-H2 together)

PRELIMINARY!!

"Loose" coincidence cuts

coincidence	triple coincident clusters $(\Delta t = 30 \text{ ms})$	after frequency cut (200Hz tolerance)	after r-statistic test $(\beta_3 = 3)$	Rejection efficiency
L1-H1-H2	20 mHz	15 mHz	0.1 mHz	(99.35 ± 0.08)%

"Tight" coincidence cuts

coincidence	triple coincident clusters $(\Delta t = 15 \text{ ms})$	after frequency cut (75Hz tolerance)	after r-statistic test $(\beta_3 = 3)$	Rejection efficiency
L1-H1-H2	6 mHz	1 mHz	0.01 mHz (1/day)	$(98.8 \pm 0.4)\%$

-raction of surviving events

10⁻⁴

False Probability versus Threshold

Entries	10485
Mean	1.28
RMS	0.5277
Underflow	0
Overflow	0

False Probability versus threshold ($\Gamma > \beta_3$)

10-1
10-2
10-3

3

2

In general: depends on the trigger generators and the previous portion of the analysis pipeline (typical event duration, how stringent are the selection and coincidence cuts)

Shown here: TFCLUSTERS 130-400 Hz with "loose" coincidence cuts

Conclusions

- The LIGO burst S1 analysis exclusively relied on event trigger generators and time/frequency coincidences.
- The search in the second science run (S2) includes a new module of coherent analysis, added at the end of the burst pipeline:
 - r-statistic test for cross correlation in time domain
 - » Assigns a confidence to coincidence events at the end of the burst pipeline
 - » Verifies the waveforms are consistent
 - » Suppresses false rate in the burst analysis, allowing lower thresholds
- Tests of the method, using simulated signals on top of real noise, yield 50% triple coincidence detection efficiency for narrow-band and broad-band bursts at SNR=3-5 in the least sensitive detector (LHO-2km) with a false probability ~1%.
- Currently measuring global efficiency and false rate for the S2 pipeline (event analysis + coherent analysis).

LIGO-G030691-00-Z