

WaveBurst simulation

Sergey Klimenko University of Florida WaveBurst group: S.Klimenko (UF), I.Yakushin (LLO), G.Mitselmakher (UF), M.Rakhmanov(UF), K.Franzen(UF)

- Simulation engine
- sine-Gaussian
- BH-BH mergers
- Summary & Plans

http://www.phys.ufl.edu/LIGO/bursts/waveburst/S2

- injection into all three interferometers:
 - waveform name
 - GPS time of injection
 - > $\{\theta, \phi, \Psi\}$ source location and polarization angle
 - T {L1,H1,H2} LLO-LHO delays
 - F+{L1,H1,H2} + polarization beam pattern vector
 - Fx {L1,H1,H2} x polarization beam pattern vector
- prepare waveforms in datacondAPI and send to DSO
- multiple injection in the same data with different hrss

- sine-Gaussian injections
 - > 16 waveforms: 8-Q9 and 8-Q3
 - > frequencies 100 2000 Hz
 - > F+ {1,1,1} , Fx {0,0,0}
- BH-BH mergers (10-100 Mo)
 - > 10 pairs of waveforms {h+,hx}
 - all sky uniform distribution with calculation {F+,Fx} for LLO,LHO
 - 1.1 millions waveforms injected
- use exactly the same pipeline for processing of GW and simulation triggers → realistic estimation of detection efficiency including all selection cuts

depends on ETG time resolution and LHO-LLO delay

S2 SG simulation sample

resolution, ms	10	20	30	50	100
total number of events	405511	464584	476437	489018	520294
estimated	9.9	18.9	26.8	39.3	71.8
background	±0.4 k	±0.5 k	±0.7 k	±0.8 k	± 1.1 k
detected	395.6 k	445.7 k	449.6 k	449.7 k	448.5 k
injections					

negligible loss of simulated events for w≥20ms
can use window of 20 ms without loss off efficiency

LIGO

reconstruction of signal parameters

S.Klimenko, November 2003, LSC

• BH-BH mergers (Flanagan, Hughes: gr-qc/9701039v2 1997) start frequency: $f_{start} \approx \left(\frac{0.02}{M}\right) = 205 Hz \cdot \left(\frac{20M_o}{M}\right)$

duration:

$$f_{start} \approx \left(\frac{0.02}{M}\right) = 205 Hz \cdot \left(\frac{20M}{M}\right)$$

 $T \approx 50M = 5ms \cdot \left(\frac{M}{20M_o}\right)$

bandwidth:

$$\Delta f \sim f_{qnr} \approx \left(\frac{0.13}{M}\right) = 1300 Hz \cdot \left(\frac{20M_o}{M}\right)$$

BH-BH simulation

 (J.Baker et al, astro-ph/0202469v1)

 all sky simulation using
 two polarizations and

 L & H beam pattern functions

• BH-BH frequency band – 100-1000 Hz

S.Klimenko, November 2003, LSC

- triple coincidence of L1 x H1 x H2 for S2 noise
- average over all sky

S.Klimenko, November 2003, LSC

- WaveBurst pipeline sensitivity (low 3C rate @0.1 mHz)
 > (5-20) . 10⁻²¹ optimal detection.
 - $\sim 2.10^{-20}$ all sky BH-BH mergers search
- robust detection of different waveforms (SGQ9 vs SGQ3)
- Plans
 - study lower threshold case to increase sensitivity
 - > do simulation of ZM supernova waveforms