

The Angular Control System at LHO: Current Status

Presented by Luca Matone LSC Conference at LHO Nov. 13th, 2003

Paul Schwinberg, Stefan Ballmer, Matt Evans, Peter Fritschel, Nergis Mavalvala, Virginio Sannibale, Rick Savage, Daniel Sigg

Requirements

- Detector's sensitivity deteriorates with
 - » misalignments of the Test Masses (decrease of the circulating power, increase of contrast defect, increase of shot-noise);
 - » beam miss-centering (angle-to-length coupling).

Need to have

- » Angular fluctuations of Test Masses: 10⁻⁸ rad-rms with respect to cavity axis;
- » Sensing noise: 10⁻¹⁴ rad/rHz for f>40Hz (WFS1);
- » Beam centering within 1mm.

LIGO-G030608-00-D

How?

Wavefront Sensors (WFS)

Beam Centering (QPDs)

WFS Matrix - H1

- Row normalized;
- Reproducibility: ~10% » except for WFS2 (?);
- denotes expected term;
- O denotes feedback element;
- WFS3 and 4: low sensitivity (increase of modulation depth);
- Common PRM DOF: 2A->2B: wondering RF phase?

L.Matone

About calibrations...

- Reproducibility: 1-2%;
- But systematic:
 - » ~20% pitch/yaw;
 - » ~20% X/Y arm;

- This generates
 - » in the calibrated Sensing Matrix (common/differential basis) the addition of non-existing cross-terms;
 - » Use of <u>nominal</u> values;

Control Viewpoint

- 1/f loop (1uHz pole);
- Crossover with
 Optical Lever servos;
- Unconditionally stable.

A look back at S2 – H1 only

- 8/10 angular degrees of freedom controlled
 - » Problems closing WFS2B loop (dITM);
 - » QPDs loops not closed
 - input beam pointing and BS free to drift.

- Low bandwidth (~100mHz)
 - » Cross-talk between WFS prevented raising the loop gain.

Observations during S2 – H1

LIGO H1 WFS Commissioning after S2

- 10/10 angular DOF controlled (~10-100mHz)
 - » Role of WFS3 and 4 swapped;
 - » WFS2 table work;
- Ready for next step
 - » Bandwidth, deal with the cross-talk;
 - » Include QPD;
 - » Noise study and loop shaping;
 - » **BUT...**

Laser Power Increased - S3

- To improve the modal overlap between the carrier and the sidebands;
- But WFS system unstable
 - » Tracked down to an RF phase rotation in WFS2 (?)
 - Phase rotation correlated to NSPOB;
 - Significant decrease in WFS2B response;
- Resolution: Gouy phase adjustment for WFS2
 - » decreased the phase rotation swing (30deg);
 - » Recuperated WFS2B response to dITM;
- WFS system for S3 (H1 and H2)
 - » 10/10 angular DOF controlled (10-100mHz);
 - Input beam pointing and BS using QPDs (<10mHz)</p>

H1: Calibrated Error Points

Angular Control Noise Contribution to the Displacement Sensitivity (H1)

14

LIGO H1: Beam positioning on WFS

- Linear dependence between demodulated signals and DC asymmetry
 - » Pitch
 - Defined as
 (DC top half-DC bot half)/DC total
 4*10-8 * DC pitch asym [rad]
 - » Yaw
 - 2*10-8 * DC yaw [rad]
- 25% DC asymmetry corresponds to 10⁻⁸ rad offset;
- Asymmetry jitter
 - » Spectral component;
 - » Faster than 1Hz;
 - » Reduced as WFS bandwidth increased?

LIGO H1: Beam positioning on WFS

- Linear dependence between demodulated signals and DC asymmetry
 - Pitch/Yaw- 10⁻⁶ * DC pitch asym [rad]
- 10% DC asymmetry introduces 10⁻⁷ rad offset;
- Feedback? Need to investigate...

0.1

WFS3 DCYawMon[ct]

0.15

0.2

0.25

0

0.05

-20 -0.05

0.3

To Do...

- Increase NR modulation depth;
- Fine tune Gouy phases (2, 3, 4)
 - » Eliminate cross-terms in WFS3;
- WFS matrix in W/urad;
- Increase bandwidth
 - » Non-diagonal terms in output matrix;
 - » Loop shaping;
- Explore beam centering on TM
 - » Currently running off-center on ETMX;
 - » Angle-to-length coupling;
- WFS2 RF phase rotation/heating effect ?
- Investigate beam centering effect on WFS;
- Goal for S4: full bandwidth (2-3Hz) angular control.