

LIGO-G030600-00-Z

Inspiral Glitch Veto Studies

Peter Shawhan

(LIGO Lab / Caltech)

For the Inspiral Analysis Group

LSC Meeting November 12, 2003

Looking Back: Vetoes in the S1 Inspiral Analysis

Vetoed H1 events if there was also a large glitch in REFL_I

Within a time window of ± 1 second

Very clean veto: deadtime = 0.2%

Considered using AS_I as a veto for L1

Abandoned this due to veto safety concerns

Overview of Inspiral Veto Studies

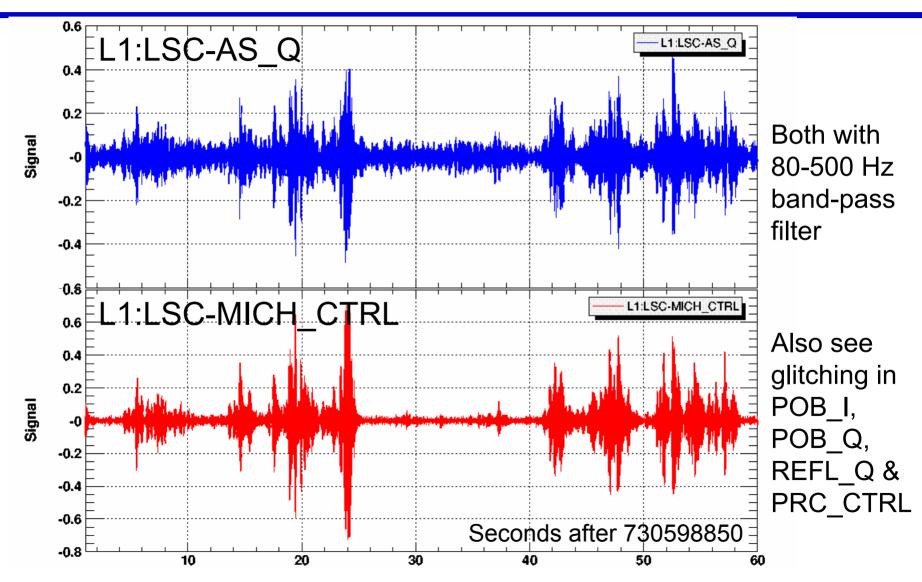
Has been a lengthy process!

Have pursued a few different approaches to explore vetoes:

(All using inspiral triggers from playground data)

- Visual examination of loudest playground events with DTT Look at AS_Q and many other channels, with various filters
- Look at inspiral trigger rate on segment-by-segment basis

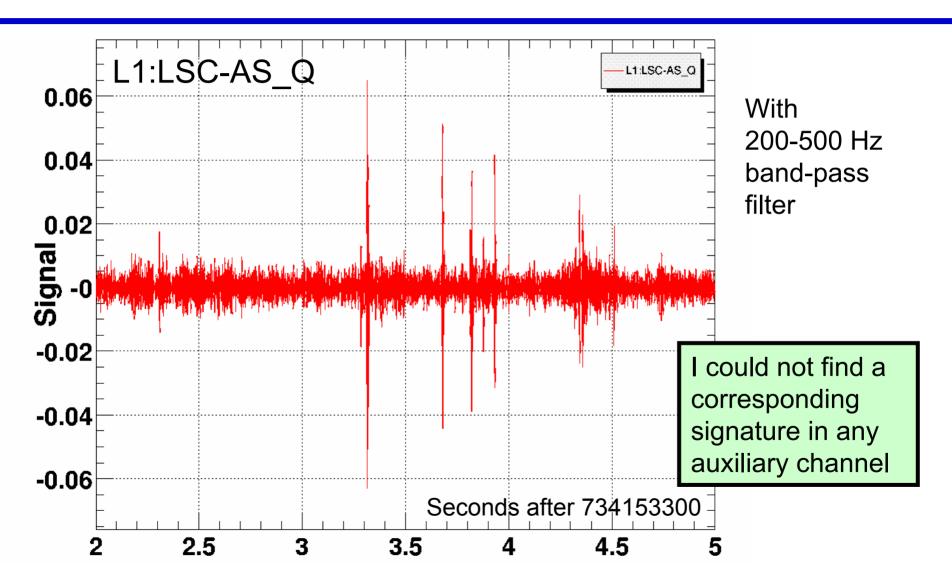
Calculate veto efficiency vs. deadtime for possible vetoes


Use veto triggers generated by glitchMon

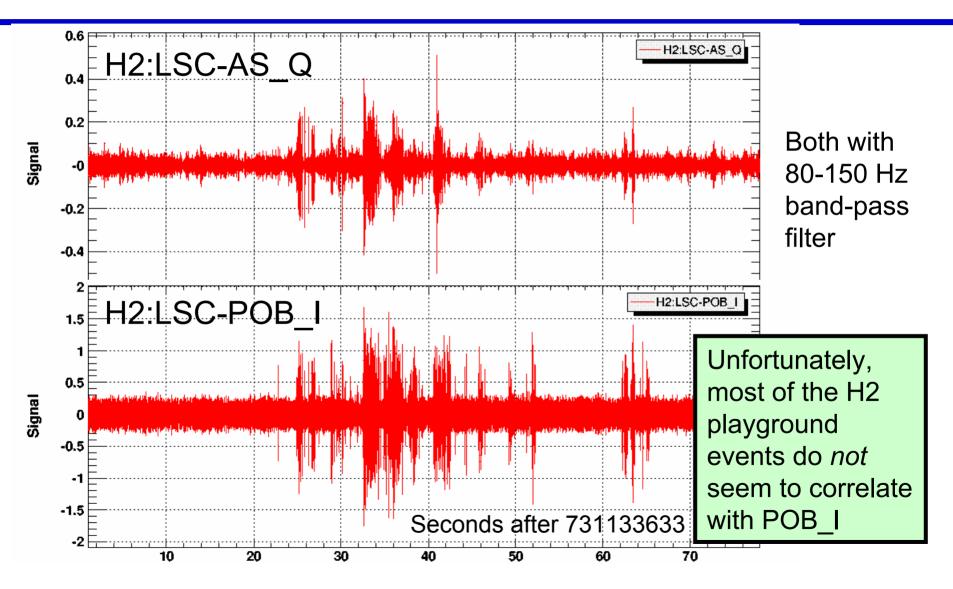
Various channels, filters, thresholds

Veto safety has been evaluated for some channels

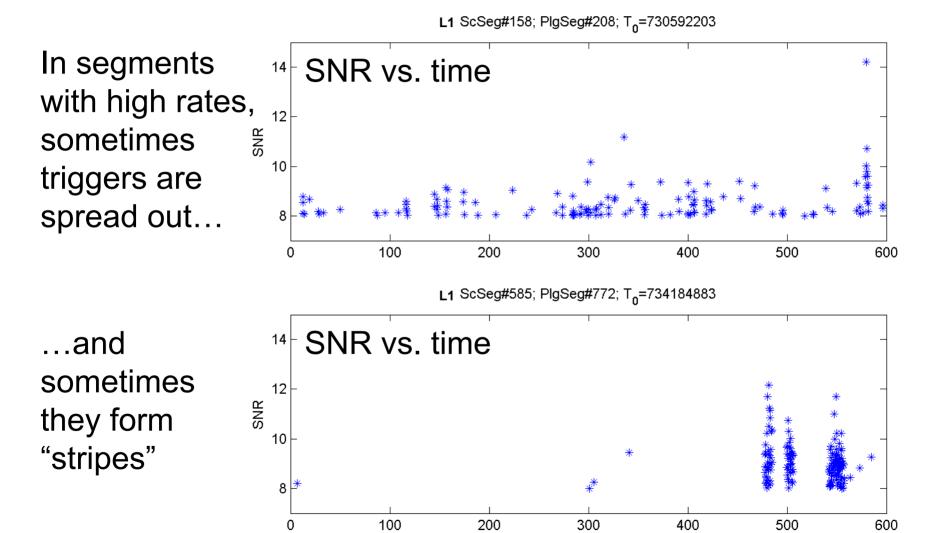
AS_I is unsafe; POB_I, POB_Q; REFL_I, REFL_Q are safe


A Loud "Inspiral" Event in L1

LSC Meeting, 10 Nov 2003

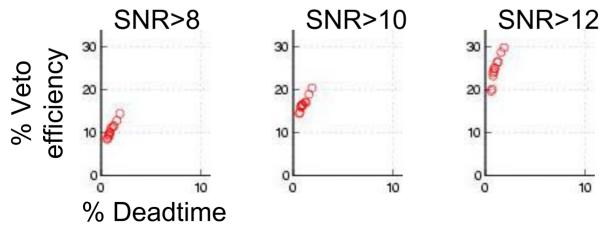

Peter Shawhan (LIGO/Caltech)

Another Loud Event in L1


LSC Meeting, 10 Nov 2003

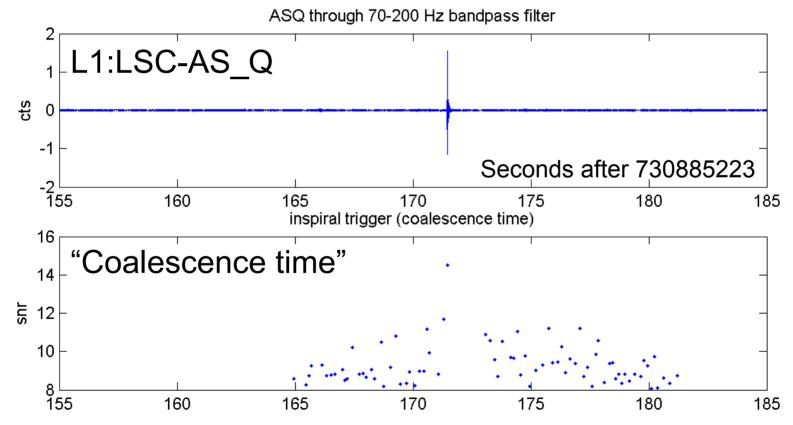
The Loudest Event in H2

LSC Meeting, 10 Nov 2003


Inspiral Trigger Rates, Segment by Segment

Veto Efficiency vs. Deadtime for Various Prospective Vetoes

For a given veto channel, filter, and veto trigger threshold, calculate veto efficiency and deadtime for various "windows", and for different sets of inspiral triggers


Example: L1:LSC-POB_I with Chebyshev 70-Hz high-pass filter, threshold = 6σ , windows from 0 to ±1 second (also require live intervals to be at least 4 seconds long)

Note: AS_DC is not nearly as good a veto for inspiral as for burst

Timing Issues

A glitch can yield a calculated inspiral coalescence time far from the time of the glitch

Timing Issues

Triggers generated by (3.0,3.0) $\rm M_{sun}$ template "Inaccurate" inspiral 10^{2} coalescence times -snr-threshold are understood to d. 10⁰ arise from ringing of the template filter, combined with the 10 155 160 165 170 180 190 175 185 χ^2 threshold Seconds from 730885223 10^{4} $\chi^2 \,/\, (8 \pm 0.03^2 \,\rho^2)$ chisa_threshol 10^2 10⁰ 155 160 165 170 175 180 190 185

Same case as before: L1:LSC-POB_I with Chebyshev 70-Hz high-pass filter, threshold = 6σ

		SNR>8		SNR>10		SNR>12	
Window	Dead%	effic	used	effic	used	effic	used
-1,+1	1.9	14.4	7.5	20.4	1.8	29.8	0.7
-2,+2	2.8	18.2	9.1	23.4	2.3	30.2	0.8
-2,+4	3.7	23.8	11.4	29.9	2.6	33.5	0.9
-4,+4	4.4	24.4	12.8	32.3	3.1	38.0	1.1
-4,+6	5.2	25.1	14.6	35.4	3.5	45.5	1.2
-4,+8	5.9	26.8	15.9	40.5	3.6	56.3	1.2
-8,+8	7.2	30.6	17.5	43.6	4.1	57.9	1.4
-8,+12	8.4	31.0	19.6	45.1	4.8	59.4	1.4

Can achieve rather high veto efficiencies, but deadtime is somewhat higher than we are comfortable with

Some segments have very high deadtime, but few/no inspiral triggers

Exploring Higher Veto Trigger Thresholds

For various target deadtimes:

			SNR>8		SNR>10	SNR>12	
<u>Channel Filt Th</u>	Window	Dead%	eff	used	eff used	eff	used
MICH_CTRL 100 30	-8,+8	0.5	9.5	23.3	26.3 9.3	52.3	4.7
POB_I 70 10	5,.5	0.5	5.1	13.2	8.7 4.2	19.5	1.4
MICH_CTRL 100 25	-8,+12	1.0	11.6	23.9	27.7 6.8	53.6	2.3
POB_I 70 9	-2,+2	1.0	13.8	17.3	20.0 5.1	29.9	1.5
AS_DC 10 6	5,.5	1.9	7.0	2.3	6.7 0.2	2.7	0.1
AS_DC no 6	5,.5	2.5	7.8	3.9	10.7 0.3	6.3	0.0
MICH_CTRL 100 11	-1,+1	1.9	14.1	6.2	31.4 1.3	38.3	0.5
POB_I 70 6	-1,+1	1.9	14.4	7.5	20.4 1.8	29.8	0.7
POB_I 70 9	-4,+8	1.7	17.0	23.5	30.7 8.1	51.9	1.5
AS_DC 10 6	-2,+2	5.3	11.4	4.8	10.9 0.3	3.7	0.1
AS_DC no 6	-1,+1	4.3	8.4	5.1	11.1 0.4	6.3	0.0
MICH_CTRL 100 11	-4,+4	5.3	23.1	10.5	40.3 2.0	46.6	0.7
POB_I 70 6	-4,+6	5.2	25.1	14.6	35.4 3.5	45.5	1.2

Physical Mechanisms

Many of the L1 triggers, and much of the POB_I variability which leads to excess deadtime, seem to have significant frequency content near 70 Hz

Physical mechanisms for this:

PRC loop (for which POB_I is the error signal) has known instability at 70 Hz when gain is too high

When gain of DARM loop goes too low (due to low optical gain), get glitches at 70 Hz

The inspiral filter code used a low-frequency cutoff of 70 Hz

Some promising veto conditions for L1

We have not yet decided on the "optimal" choice

No good candidates for H1 or H2

In H2, POB_I correlates sometimes, but unimpressive overall

Plan to re-filter data with a higher low-frequency cutoff

Hope to make inspiral event rate lower and more stable Will then revisit vetoes