

BlockNormal Performance Studies

John McNabb & Keith Thorne, for the Penn State University Relativity Group https://gravity.psu.edu/~s2

Outline

- What is BlockNormal
- Event Characterization and Coincidence
 - » Event Time
 - » Energy
- Detector Sensitivity Studies
 - » Efficiencies
 - » Sensitivity to thresholds

What is BlockNormal

Thresholds:

- Change-Points
 - » Where variance (σ^2) or mean (μ) changes
 - » Divides data into blocks of ~ constant mean & variance
- Events:
 - » Block becomes event when
 - variance above threshold
 - Mean differs from background by more than threshold
 - » Thresholds based on characteristics (μ_0, σ_0^{-2}) of stationary epochs
- Cluster adjacent accepted blocks

Event Characterization Study

- Coincidence cut requires accuracy & precision of reconstructed event properties
 - » BlockNormal output per IFO, frequency band:
 - "Characteristic time"
 - Energy
 - Duration
- Reconstruction accuracy & precision studied with simulated signals

$$h(t) = h_0 \exp\left(-\frac{(t-t_0)^2}{2\tau^2}\right) \cos 2\pi f(t-t_0)$$

 $f = 576 \,\mathrm{Hz}, \ \tau = 100 \,\mathrm{ms}$

Event Time Reconstruction

- Event "when" necessary to for interdetector coincidence
 - » Mid-point of block with greatest variance will be independent of event amplitude
- Time resolution improves with amplitude
- ∆T < 8 samples (32 ms) for 50% of events
 - » Clusters at very low amplitude are short-duration $\Delta T \sim 0$
- ∆T < 80 samples (320 ms) for 90% of events
- Why long tail?
 - » One playground segment in H1 Lock 61 has several "odd", long events
 - » Under investigation; suspect need for veto

Energy Reconstruction

Energy Reconstruction

$$E_{R} = \frac{\Delta t}{\left|R_{eff}\right|^{2}} \sum_{k} \left(N\mu_{k}^{2} + (N-1)\sigma_{k}^{2}\right)$$
$$E_{0} = \frac{1}{\left|R_{eff}\right|^{2}} \int_{-\infty}^{\infty} h(t)^{2} dt$$

- Note different ratios
 - » Lock 61: Three different 10m playgrounds separated by 1h46m10s
 - » Differences owe to time dependent calibration
- Reconstruction: good precision, open questions on accuracy

- Measure and characterize efficiency as function of amplitude
 - » Amplitude at 50% efficiency?
 - » How rapidly does efficiency climb with amplitude?
 - » Maximum efficiency?
 - » Residual false rate?
- Sensitivity of efficiency to BN thresholds
 - » Change-point, event thresholds

Sensitivity Determination

- Initial study lock 61 playground 512-640 Hz band
- In-band simulated signal

$$h(t) = h_0 \exp\left(-\frac{(t-t_0)^2}{2\tau^2}\right) \cos 2\pi f(t-t_0)$$

 $f = 576 \,\mathrm{Hz}, \ \tau = 100 \,\mathrm{ms}$

• Fit to sigmoid with parameters for efficiency, false alarm rate

$$\varepsilon(h) = \frac{\varepsilon_0}{2} \left[1 + \tanh\left(\sigma \ln\frac{h}{h_{50}}\right) \right] (1 - \alpha) + \alpha$$

Sensitivity to Change-Point Thresholds

- Use ρ_{A} trigger for adding change-points
- Use ρ_{R} trigger for removing change-points
 - » Creates "dead-band" to prevent thrashing
- Sensitivity (E₅₀) depends weakly on ρ_A
- Efficiency steepness (σ) falls with increasing ρ_A
- Sensitivity nearly independent of "dead-band" width $\Delta \rho$

Sensitivity to Event Thresholds

- Blocks become events when
 - » $(\mu \mu_0)^2 / \nu_0 > \mu_T$ or
 - » $v / v_0 > v_T$
- E_{50} more sensitive to ν_{T} than to ρ_{A}
- Steepness σ plateaus with large ν_{T}
- At thresholds investigated so-far most events from ν_{T}
 - \ast Should we balance $\nu_{T},~\mu_{T}$ thresholds for equal # events? Under investigation

- Complete pipeline implementation
 - » Coincidence, correlation, statistical inference
- Set operating parameters
 - » Tune on coincident/correlated event performance
 - » Characterize behavior over range of signal types
- Discover and understand anomalies on playground
 - » E.g., lock 61 H1 features
- Run over full S2 (and available S3) data for science results