

$h \rightarrow AS_Q$ Filtering in the Time Domain

Patrick Sutton LIGO-Caltech for the Penn State PSURG Group

LIGO-G030574-00-Z

Outline

- Goals
- Calibration review
- Mindless first attempts
- Response to problems
- Status/Future

Motivation

- Ability of event trigger generators to detect gravitational wave signals is tested by adding simulated signals to the AS_Q data.
- Efficiency tests need mechanism to convert simulated signals from units of strain to AS_Q counts.
- BlockNormal bursts ETG is a time-domain search tool; we would like to have time-domain h → AS_Q filters.
- Other nice properties of time domain filters:
 - » causal
 - » can use online
 - » good for long data streams

Inverse Calibration ($h \rightarrow AS_Q$)

• Inverse calibration in the frequency domain:

$$X_{AS_Q}(f) = \frac{\alpha(t) C(f)}{1 + \alpha(t)\beta(t) G(f)} X_h(f)$$

- » Open-loop gain G, sensing function C are functions of frequency only.
- » Optical gain α and DARM gain β are functions of time only.
- Goal: Construct digital time-domain filters [b,a] with this frequency response for any αβ.

LIGO

Calibration vs. Inverse Calibration

 Calibration function AS_Q → h is time-dependent sum of two fixed filters:

$$\frac{1+\alpha\beta G}{\alpha C} = \frac{1}{\alpha C} + \frac{\beta G}{C}$$

• Inverse calibration function $h \rightarrow AS_Q$:

$$\frac{\alpha C}{1 + \alpha \beta G} \neq \frac{\alpha C}{1} + \frac{C}{\beta G(f)}$$

Must mass-produce h \rightarrow AS_Q filters (every $\alpha\beta$ in 0.5 < $\alpha\beta$ < 2.5).

LIGO-G030574-00-Z

Simple-Minded Approach

• Let MatLab do the work:

>> help invfreqz

INVFREQZ Discrete filter least squares fit to frequency response data.

[B,A] = INVFREQZ(H,W,NB,NA) gives real numerator and denominator coefficients B and A of orders NB and NA respectively, where H is the desired complex frequency response of the system at frequency points W, and W contains the normalized frequency values within the interval [0, Pi] (W is in units of radians/sample).

Knobs

• Knobs:

- » The orders nb, na for the desired filter.
- » The relative weighting w(f) of various frequencies in fitting the filter to the target inverse calibration function.
- » Free to play with transfer function outside of frequency range of interest.

• Questions:

- » What filter orders give good fits?
- » What frequency weights give good fits?
- » How does the quality of the fit vary with $\alpha\beta$?

LIGO

Filter Quality

• Use fractional RMS error:

Error
$$\equiv \sqrt{\frac{1}{N} \sum_{k=1}^{N} \left| \frac{Cb_{\text{filt}} - Cb}{Cb} \right|^2}$$

- Compare desired to actual frequency response of filter at N frequencies. Ignore frequencies outside of the bands of interest (~[128,2048]Hz minus violin-mode harmonics).
- Desire error \leq few %.

LIGO-G030574-00-Z

Problem solved?

- Can guarantee invfreqz filters are stable.
- Not guaranteed to be accurate. Vary $\alpha\beta$, see what happens...

Disaster!

LIGO-G030574-00-Z

Implications

- invfreqz is not robust: changes of a few percent in αβ can lead to filters with errors that differ by orders of magnitude.
- Problem is generic across filter orders nb, na.
- Reponse:
 - » don't generate filters on-the-fly.
 - » generate a fixed bank of filters for each IFO for closelyspaced $\alpha\beta$. Test each for quality before adding to the set.

 Calibration info and/or frequency band of interest usually doesn't go up to Nyquist frequency; can't ignore this region.

LIGO

 In the frequency domain:

Next problem:

 In the time domain (impulse response):

Solution:

 Extrapolate inverse calibration function smoothly to zero outside frequency range of interest:

LIGO

LIGO

Nice bonus of time domain:

LIGO-G030574-00-Z

Summary/Outlook

• Calibration: good.

- Time domain calibration: hard, but possible if careful.
- Next steps: Generate S2 H1/H2/L1 filter banks for closely spaced values of $\alpha\beta$.
- Other possibility: get smart and use knowledge of IFOs. See what Adhikari's MatLab IFO model can do for us.
- Suggestions are welcome!

Log₁₀ Maximum RMS Fractional Error vs Filter Order

