

LIGO Grid Applications Development Within GriPhyN

LIGO Laboratory, Caltech lazz@ligo.caltech.edu

AVATE

Albert Lazzarini

GriPhyN All 15-17 O

LIGO- G030537-01-E

LIGO Applications Development Team (GriPhyN)

- LIGO Scientific Collaboration
 - LIGO Laboratory
 - UWM
 - AEI (Germany)
- ISI

LIGO and Grid Computing

- Revealing the full science content of LIGO data is a computationally and data intense challenge
 - Several classes of data analysis challenges *require* large-scale computational resources

Search for gravitational wave (GW) analogs of electromagnetic (EM) pulsars

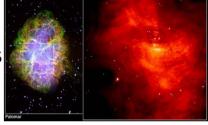
- •GW sources not likely to have EM counterparts
 - •Fast (millisecond) EM pulsars are stable, old neutron stars (NS)
- GW emission likely to come shortly after birth of a rapidly rotating (deformed, hot) NS
- GW sky is <u>unknown</u>

LIGO

- •Searches will need to survey a large parameter space
- All-sky search for previously unidentified periodic sources requires > 10¹⁵ floating point operations per second (FLOPS)

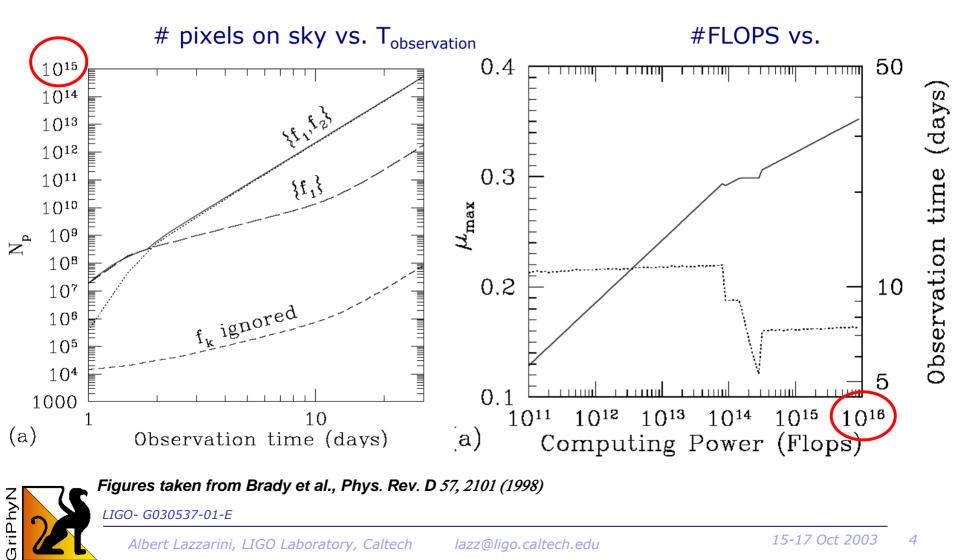
 Coalescence of compact binary systems ("inspiral chirps") which include spin-spin interactions will cover a huge parameter space (~ 10⁶ greater

than spinless systems)


- Important for more massive systems
- Massive systems have greater GW luminosities
- Likely to be the first detected

These analyses are ideally suited for distributed (grid-based) computing

IPhyN



LIGO

Efficient search of entire sky for unknown GW pulsars (with no EM counterpart) requires $> 10^{15}$ FLOPS

LIGO

LIGO GriPhyN Application:

Grid-deployed production-level GW pulsar search

The pulsar search conducted at SC 2002 -- <u>TOY DEMO</u>

Used LIGO data subset collected during the first scientific run of the instrument

- Targeted a set of 1000 locations including both known EM pulsar as well as random locations in the sky
- Results of the analysis are available via LDAS (LIGO Data Analysis System) DB queries
- Performed using LDAS and compute and storage resources at Caltech, University of Southern California, University of Wisconsin Milwaukee.

SC 2002

Over 58 directions in the sky searched Total of

330 tasks

469 data transfers

330 output files produced.

The total runtime:11.4 hr

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

Goal: Use SC2003 to initiate a production analysis run for GW pulsars

- Stand-alone search codes to be used for the SC2003
 - Perform frequency-time transformations of data
 - Parameters of transform depend on $\{\theta, \phi, (f, f', f', ...)\}$
- Code originally developed by GEO project as part of LIGO collaboration
- The code has been modified to enable a user to specify input and output file names and parameters on the command line
 - Stage data to/from compute resources as needed
- Auto generator will approximately search the galactic core for pulsars
 - Specifies the range of parameters to be search
- Results will be shown on a 3D Visualization

Grid-deployed *production*-*level* GW pulsar search

- Use SC2003 to implement *production-level* scalable version of SC2002 demonstration
- Original goal: Implement a <u>production</u> GW pulsar search over a patch (less than 4π of sky) search running for ~30 days on O[10x] more resources than LIGO has => use the grid (<u>10000</u> CPUs for 1 month)
 - Subscale implementation using ONLY LIGO-owned resources in development
 - Joint development with ISI CS team.
- As additional resources become available, will scale production run to expand beyond LIGO resources.

LIGO Grid Sites

LIGO Grid: 6 US sites + 2 EU sites (Cardiff/UK, AEI/Germany)

Collaboration: 35+ institutions world wide; 400 members

Ph

٢

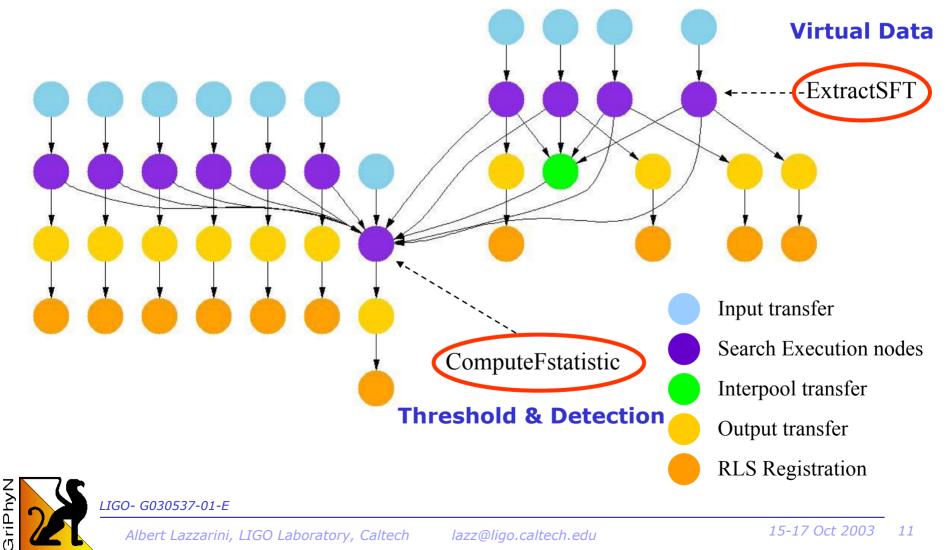
LIGO

Albert Lazzarini, LIGO Laboratory, Caltech lazz@ligo.caltech.edu

SC2003 production run

- Sites to be used
 - ✓ ISI Condor and LSF Clusters
 - ✓ LIGO CALTECH condor pool
 - ✓ UWM condor pool
 - ✓ AEI (Germany) condor pool
 - Cardiff condor pool
 - •UW Madison condor pool
 - ?Teragrid resources ?Grid3 resources

(035 CPUs) (220 CPUs) (300 CPUs) (300 CPUs) (046 CPUs) (800 CPUs) (~1024 CPUs)



Implementation details

- Web portal based authentication using MyProxy and request submission.
- Resource discovery and information using Globus MDS
- S2 science run data from 3 interferometers to be used
- Each input file contains data for 1800s approximately 25Mb in size
- Executable staging for sites which don't have geo-code installed
- Site monitoring being done using GANGLIA
- Globus Replica Location Service used for registering raw and materialized data products

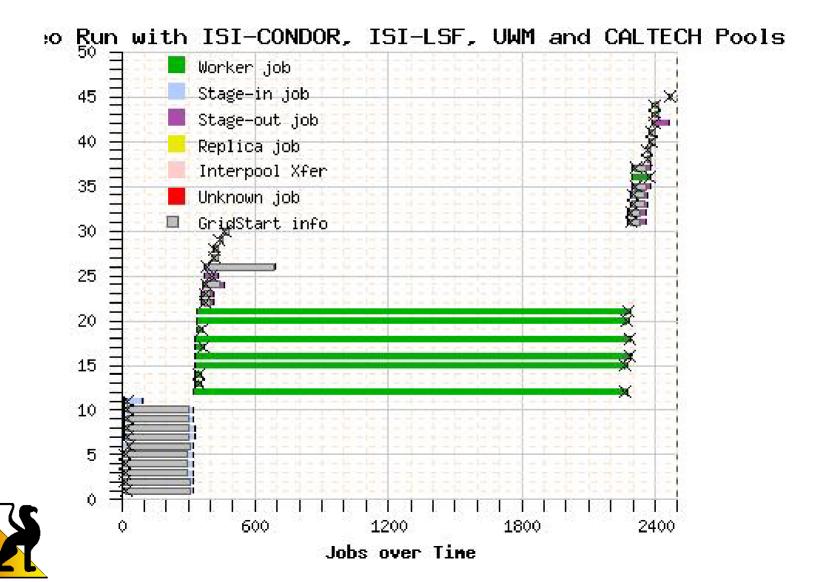
GW Pulsar Search - Dag Structure

LIGO

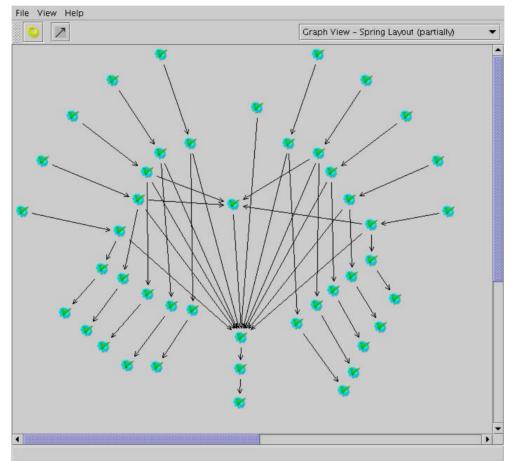
LIGO

Status

- First dry run week of 2003.10.07 for testing out the search code and the SC demo/production infrastructure.
- The jobs were run at the ISI condor pool, ISI lsf cluster, CALTECH condor pool and UWM condor pool
- The outputs transferred to the ISI condor pool
- The jobs breakdown is as follows
 - 11 input transfer jobs (bringing in 1002 input files) (1000 raw files and 2 calibration files earth.dat and sun.dat)
 - 10 Extract SFT jobs each crunching on 100 input files
 - 1 ComputeFstat job which takes the 1000 extracted SFT files and computes fstatistic.
 - 1 interpool transfer job which transfers data from runs at CALTECH, UWM and ISI LSF cluster to the ISI condor pool (The computeFstat was running at ISI LSF cluster)
 - 11 output transfers (All the output data was stored in the storage location associated with the ISI condor-pool)
 - 11 RLS registration jobs (All data was registered at rls://smarty.isi.edu associated with the ISI condor-pool)



LIGO- G030537-01-E


GW Pulsar Search - Dag Over Time

LIGO

GriPhyN

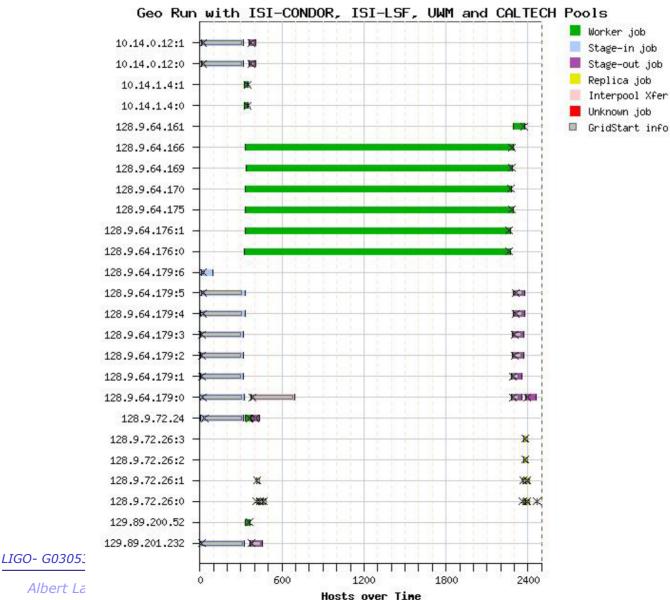
Run time Dag Visualization

Visualization code by Gregor von Laszewski, and Michael Hategan (ANL)

GriPhyN

LIGO

LIGO Science Has Started


- First Science run ("S1"): 2002.08.26 09.09
 - First LIGO scientific results submitted for publication
- Second science run ("S2"): 2003.02.14 04.14
 - Sensitivity was ~10x better than first run
 - Duration was ~ 4x longer
- Third science run ("S3"): 2003.10.31 2004.01.05
- LIGO is analyzing *real* data *today* with emerging grid technologies
 - Need to balance priorities:
 - > data analysis challenges vs. grid R&D challenges
 - Opportunity to provide "case study" feedback to middleware development activities
 - > robustness, QA
 - > timeliness -- tracking of opensource software releases (e.g., linux kernels, ...)
 - > what works, what does not work, what needs improvement, ...

LIGO

LIGO- G030537-01-E

LIGO GW Pulsar Search - Dag Over Time by Hosts

GriPhyN

