Status of the Hough CW search code - Plans for S2 -

A.M. Sintes,

B. Krishnan, M.A. Papa Universitat de les Illes Balears, Spain Albert Einstein Institut, Germany

LSC Meeting Hannover, August 2003

LIGO-G030517-00-Z

The hierarchical Hough search. Pipeline for S2

- Statistics of the Hough maps. Frequentist analysis
- ≻ Code status
- ≻ Results on simulated & H1 data

- The idea is to perform a search over the total observation time using an incoherent (sub-optimal) method:
 - We propose to search for evidence of a signal whose frequency is changing over time in precisely the pattern expected for some one of the parameter sets
- The method used is the Hough transform

SFT data

 $\hat{N} F_k$

 $T_{\hat{N}}(t)$

LIGO

$$f(t) - f_0(t) = f_0(t) \frac{\vec{v}(t)}{c} \cdot \hat{n}$$

The time-frequency pattern

$$f(t) - F_0(t) = \vec{\xi}(t) \cdot (\hat{n} - \hat{N})$$

$$F_0(t) \equiv f_0 + \sum_k \Delta f_k \left[\Delta T_{\hat{N}}(t) \right]^k \qquad \Delta f_k \equiv f_k - F_k$$

$$T_{\hat{N}}(t) = t + \frac{\vec{x}(t) \cdot \hat{N}}{c} + \cdots$$
 Time at the SSB for a given sky position
$$\vec{\xi}(t) = \left(F_0(t) + \sum_k F_k \left[\Delta T_{\hat{N}}(t)\right]^k\right) \frac{\vec{v}(t)}{c} + \left(\sum_k kF_k \left[\Delta T_{\hat{N}}(t)\right]^{k-1}\right) \frac{\Delta \vec{x}(t)}{c}$$

LSC Meeting, August '03, A.M. Sintes

 \Box

С

Incoherent Hough search: Pipeline for S2

LIGO

- Input data: Short Fourier Transforms (SFT) of time series \geq (Time baseline: 1800 sec, calibrated) $\widetilde{x}(f) = \widetilde{n}(f) + \widetilde{h}(f)$
- For every SFT, select frequency bins *i* such

 $\rho_{i} = \frac{|\tilde{x}(f_{i})|^{2}}{\langle |\tilde{n}(f_{i})|^{2} \rangle} = \frac{|\tilde{x}(f_{i})|^{2}}{S_{n}(f_{i})T_{SFT}} \quad \text{exceeds some threshold } \rho_{0}$ $\Rightarrow \text{ time-frequency plane of zeros and ones}$

LIGO

 \triangleright $p(\rho|h, S_n)$ follows a χ^2 distribution with 2 degrees of freedom:

$$\left\langle \rho_{i} \right\rangle = 1 + \frac{\left| \tilde{h}(f_{i}) \right|^{2}}{S_{n}(f_{i})T_{SFT}} \qquad \sigma_{\rho}^{2} = 1 + \frac{2\left| \tilde{h}(f_{i}) \right|^{2}}{S_{n}(f_{i})T_{SFT}}$$

 \triangleright The false alarm and detection probabilities for a threshold ρ_0 are

$$\alpha(\rho_0 | S_n) = \int_{\rho_0} p(\rho | 0, S_n) d\rho = e^{-\rho_0}, \quad \eta(\rho_0 | h, S_n) = \int_{\rho_0} p(\rho | h, S_n) d\rho$$

• After performing the HT using N SFTs, the probability that the pixel $\{\alpha, \delta, f_0, f_i\}$ has a number count n is given by a binomial distribution:

$$P(n \mid p, N) = {\binom{N}{n}} p^n (1-p)^{N-n}$$

$$p = \begin{cases} \alpha & \text{signal absent} \\ \eta & \text{signal present} \end{cases}$$

$$p = \begin{cases} \alpha & \text{signal present} \\ \gamma & \text{signal present} \end{cases}$$

• The Hough false alarm and false dismissal probabilities for a threshold n_0

$$\alpha_{H}(n_{0}, \alpha, N) = \sum_{n=n_{0}}^{N} \binom{N}{n} \alpha^{n} (1-\alpha)^{N-n} \rightarrow \text{Candidates selection}$$
$$\beta_{H}(n_{0}, \eta, N) = \sum_{n=0}^{n_{0}-1} \binom{N}{n} \eta^{n} (1-\eta)^{N-n}$$

• Perform the Hough transform for a set of points in parameter space $\lambda = \{\alpha, \delta, f_0, f_i\} \in S$, given the data:

$HT: S \rightarrow N$

 $\lambda \rightarrow n(\lambda)$

• Determine the maximum number count n*

LIGO

 $n^* = \max(n(\lambda)): \lambda \in \mathbf{S}$

• Determine the probability distribution $p(n|h_0)$ for a range of h_0

• Perform the Hough transform for a set of points in parameter space $\lambda = \{\alpha, \delta, f_0, f_i\} \in S$, given the data:

$HT: S \rightarrow N$

 $\lambda \rightarrow n(\lambda)$

• Determine the maximum number count n*

LIGO

$$n^* = \max(n(\lambda)): \lambda \in \mathbf{S}$$

- Determine the probability distribution $p(n|h_0)$ for a range of h_0
- The 95% frequentist upper limit $h_0^{95\%}$ is the value such that for repeated trials with a signal $h_0 \ge h_0^{95\%}$, we would obtain $n \ge n^*$ more than 95% of the time

$$0.95 = \sum_{n=n^*}^{N} p(n|h_0^{95\%})$$

•Compute $p(n|h_0)$ via Monte Carlo signal injection, using $\lambda \in \mathbf{S}$, and $\phi_0 \in [0,2\pi], \psi \in [-\pi/4,\pi/4], \cos \iota \in [-1,1].$

Code Status

- ✓ Stand-alone search code in final phase
- ✓ Test and validation codes (under CVS at AEI)
- ✓ Hough routines are part of the LAL library:

👔 🌿 Bookmarks 🤹 Location: [http://www.lsc-group.phys.uwm.edu/cgi-bin/cvs/viewcvs.cgi/lal/packages/houghpulsar/src/?cvsroot=lal				
iai/packages/ilough	View			
Current directory: [lal]/lal/packages/houghpulsar/src Files shown: 9				
File	Rev.	Age	<u>Author</u>	Last log entry
ConstructPLUT.c	<u>1.8</u>	4 weeks	sintes	bug fixed at bin zero
DriveHough.c	<u>1.3</u>	4 months	sintes	new functionality
≣ <u>HoughMap.c</u>	<u>1.2</u>	4 months	sintes	new functionality
in <u>Makefile.am</u>	<u>1.4</u>	4 months	sintes	new functionality
NDParamPLUT.c	<u>1.2</u>	2 months	sintes	changed
■ <u>ParamPLUT.c</u>	<u>1.4</u>	2 months	sintes	changed
DatchGrid.c	<u>1.4</u>	4 weeks	sintes	improved bin counting for non-demod. case
■ <u>Peak2PHMD.c</u>	<u>1.4</u>	4 months	sintes	new functionality
Stereographic.c	<u>1.2</u>	4 months	sintes	new functionality

- ✓ Auxiliary functions C-LAL compliant (under CVS at AEI to be incorporated into LAL or LALApps):
 - Read SFT data

- Peak Selection (in white & color noise)
- Statistical analysis of the Hough maps
- Compute $\langle v(t) \rangle$

> Under development:

- Implementation of an automatic handling of noise features. Robust PSD estimator.
- Monte Carlo signal injection analysis code.
- Condor submission job.
- Input search parameter files

S2 Numbers

- $T_{obs} = 59 \text{ days}$
- SFTs of $T_{SFT} \sim 30$ minutes
- $N \equiv T_{obs} / T_{SFT} = 2832 \text{ (max)}$
- $\Delta f = 1/T_{SFT} = 5.55 \times 10^{-04} \text{ Hz}$
- $\Delta f_1 = 1.09 \times 10^{-10} \text{ Hz/s}$
 - Because of memory allocation (on a single node): for $f_0 \sim 300$ Hz, sky patch ~ 1radx1rad, ~10⁴ different sky locations.
 - Driver code automatically updates LUTs in the search band. A search over 500 different f_0 can be performed using the same LUT

Validation code

LIGO

-Signal only case- (f_0 =500 Hz)

Validation code

-Signal only case- (f_0 =500 Hz)

LIGO

 \Box

Signal only case II

LIGO

Signal only case II

LIGO

LSC Meeting, August'03, A.M. Sintes

 \triangleleft

Results on simulated data

LIGO

Noise only case

LIGO

Comparison with a binomial distribution

LIGO

H1 Analysis – the SFTs

LIGO

1887 Calibrated SFT's H1 $T_{SFT} = 1800s$, Band : 263-268 Hz

26 SFT, $\sigma \leq 0.95$ or $\sigma \geq 1.05$

 \Box

H1 Results 264-265 Hz

"upper limit estimate"

 \Box

Computational Engine

LIGO

Searchs offline at:

- Medusa cluster (UWM)
 - 296 single-CPU nodes (1GHz PIII + 512 Mb memory)
 - 58 TB disk space

Merlin cluster (AEI)

- 180 dual-CPU nodes
 (1.6 GHz Athlons + 1 GB memory)
- 36 TB disk space
- CPUs needed for extensive Monte-Carlo work

Signal only case

 \Box

The cone of PHM

LIGO

 \Box

$$h(t) = F_{+}(t) h_{+}(t) + F_{\times}(t) h_{\times}(t)$$
$$(\alpha, \delta), f_{0}, f_{1}, h_{0}, \iota, \psi, \phi_{0}$$

beam-pattern functions and depend on the relative orientation of the detector w.r.t. the wave. They depend on ψ and on the amplitude modulation functions a(t) and b(t) that depend on the relative instantaneous position between source and detector.

$$h_{+}(t) = h_{0} \frac{1 + \cos^{2} \iota}{2} \cos \Psi(t)$$

$$h_{\times}(t) = h_{0} \cos \iota \sin \Psi(t)$$

the two independent wave polarizations.

 $\Psi(t) = \phi_0 + \Phi(t)$

the phase of the received signal depends on the initial phase and on the frequency evolution of the signal. The latter depends on the spin-down parameters and on the Doppler modulation, thus on the frequency of the signal and on the instantaneous relative velocity between source and detector.