

BicoMon

Steve Penn (HWS) & Vijay Chickarmane (LSU)

LIGO

What are Higher Order Statistics?

1D Statistics:

» Correlation:
$$C_{xy}(t) = \int_{-\infty}^{\infty} x(\tau) y(t+\tau) d\tau \iff X(f) Y^*(f) = S_{xy}(f)$$

- » Power Spectral Density: $C_{2x}(t) \Leftrightarrow X(f) X^*(f) = S_{2x}(f)$
- » Coherence: $C_{xy}(f) = \frac{S_{xy}(f)}{\sqrt{S_{2x}(f) S_{2y}(f)}}$
 - Tells us power and phase coherence at a given frequency

Second Order Statistics

2D Statistics:

» Bicumulant:

$$C_{xyz}(t,t') = \int_{-\infty}^{\infty} x(\tau)y(t+\tau)z(t'+\tau)d\tau \iff X(f_1)Y(f_2)Z^*(f_1+f_2) = S_{xyz}(f_1,f_2)$$

» Bispectral Density:

$$C_{3x}(t) \iff X(f_1)X(f_2)X^*(f_1+f_2)=S_{3x}(f_1,f_2)$$

» Bicoherence:

$$C_{xyz}(f) = \frac{S_{xyz}(f_1, f_2)}{\sqrt{S_{2x}(f_1) S_{2y}(f_2) S_{2z}(f_1, f_2)}}$$

Tells us power and phase coherence at a coupled frequency

Why Higher Order Statistics?

- For a Gaussian process $C_{nx}(t) = 0$, for n > 2
- For independent processes:

$$z(t) = x(t) + y(t), \quad C_{nz}(t) = C_{nx}(t) + C_{ny}(t) \xrightarrow{n>2} C_{ny}(t)$$

- Allows for separation of Gaussian process for n>2
 - » Visual check of frequency coupling and phase noise
 - » Statistical test for the probability of gaussianity and linearity
 - » Iterative process to reconstruct nongaussian signal from the higher order cumulants

Monitor Plan - MatLab tool

MatLab tool:

- » Flexible tool for quickly examining auto-bicoherence
- Allows one to see evidence of bilinear couplings
- » Exists!
- » Does not allow continual monitoring.
- » Does not allow full diagnosis of problem (no cross-bicoherence)
- » Vijay will continue development for upcoming E runs, S3.
- » Gaby will discuss result in next talk.

LIGO

Monitor Plan - Foreground Monitor

- Plots (cross-)bicoherence, (cross-)bispectrum, & PSD's
- Automatic decimation
- Optimized windowing
- User specified:
 - » $f_{max} \& \Delta f$ (Limited to factor 2^n)
 - » accuracy/averaging
 - » Calculation method
- Outputs GIF files of the plots
- ★ Vectorized FFT routines for speed
 - Heterodyning
 - Monitoring BC of certain ROI and changes in BC
 - Output of ROI to Background Monitor
 - Not done
 LIGO-G030508-00-Z

Monitor Plan - Background Monitor

- Monitors integrated BC in ROI
- Monitors changes in BC in ROI
- Monitors integrated BC over unique area (Gaussianity)
- Underdevelopment for mini-Eruns