Dual Axis Radiographic Hydrodynamic Testing:

The DARHT Project

Carol Wilkinson Los Alamos National Laboratory September 9, 2003

Los Alamos

LIGO-G030500-00-M

Talk Outline

The DARHT Accelerator as X-Ray Source Principles of Operation

Radiographic Hydrotesting – The Why and the What

The DARHT Project

- Multi-organizational Project
- Construction/Operations Interface

What is Hydrodynamic Testing?

High explosives (HE) driven experiments to study nuclear weapon primary implosions.

- Radiographs of chosen instants during dynamic conditions.
- Metals and other materials flow like liquids under high temperatures and pressures produced by HE.

Static Cylinder Set-up

Static cylinder shot

Static Cylinder Radiograph

Nuclear Weapon Primer

4

Hydrotesting Purpose

Radiographic images from hydrotesting help ensure the credibility of our enduring nuclear weapon stockpile.

- Evaluating effects of aging on materials
- Fine tuning computer modeling of weapon performance and behavior.
- Evaluating re-manufactured components.
- Certification of existing weapon systems in stockpile.

Types of Hydrotesting Facilities Worldwide

Newest Hydrotesting Facility - DARHT

9/9/03

DARHT X-Ray Images With 3D Information

Overview of Linear Induction X-Ray Sources

Linear Induction Accelerators (LIA) used for high dose at moderate energy with short pulse width & small spot (~2 mm).

9/9/03

LIA accelerating gaps

DARHT Accelerator Principles of Operation

The DARHT accelerators use pulsed power sources to produce and accelerate a single electron beam pulse. DARHT Axis 2 chops the beam into 4 pulses just before the target.

The two machines use different pulsed power technology.

DARHT Axis 1 Accelerator

- 60-ns, 2-kA, 19.8-MeV electron beam for single pulse radiography.
- Linear Induction Accelerator with ferrite cores and Blumlein pulsed power.
- The injector uses a capacitor bank and a Blumlein at 4-MV.
- Cold velvet cathode.
- Single 60 ns pulse.

9/9/03

Operation began in July 1999.

DARHT Axis 2 Accelerator

- 2-μs, 2-kA, 18.4-MeV electron beam for 4-pulse radiography.
- Linear Induction Accelerator with wound Metglass cores and Pulse Forming Networks (PFNs).
- The Injector uses a MARX bank with 88 type E PFN stages at 3.2 MV.
- Thermionic cathode.
- 4 micropulses variable pulse width.
- Commissioning now.

DARHT 1 Pulsed Power Systems - Injector

Pulsed power

- 3-mF/120-kV cap. bank pulse charges
 6ft-dia. Blumlein thru a 1:15 x-fmr.
- 4 parallel laser-triggered Blumlein switches with 0.7-ns, 1-s jitter
- 3 series transmission lines with impedance changes step-up the voltage to the diode.

Nominal 4-MV diode

- 64-mm/90-mm velvet cathode (2/4-kA)
- 170-Ω liquid resistor in parallel with
 - 181-mm AK gap. $1-k\Omega$ diode.
- 10-90% risetime of 20-ns
- Norm. emittance ~ 0.12 π cm-rad

DARHT-1 Pulsed Power Systems - Accelerator

32 water-insulated Blumleins

- 11-Ω, 250-kV, charged with a 1.4-µF/40-kV capacitor Bank thru a 1:11 xfmr.
- separate triggers with 30-nF/70-kV cap. Bank, 1:4 xfmr, magnetic pulse-compression line
- mid-plane triggered SF₆ switch
- < 1-ns (1σ) jitter for any consecutive 100 shots</p>
- 67-ns pulse to accelerator
- 0.6% rms energy variation over 60-ns beam pulse.

Induction cell pulsed power

Induction cells

DARHT 2 Pulsed Power Systems - Injector

- 3.2 MeV
- 16.5-cm dia. dispenser cathode
- Marx bank with 88 type E PFN stages
- 444.5-cm tall insulating column with Mycalex and ceramic rings
- Design emittance (norm., 4-rms) is 0.05 π cm-rad

DARHT 2 Pulsed Power Systems - Diode

- 16.5cm diameter B-type
- 2kA => 9.35A/cm²
- 3.2MeV Gap Voltage
- Aligned with hexapod
- 1-m dia. polished cathode shroud
- 4-μm finish, 120 kV/cm field stress

Thermionic Cathode

Cathode inside vacuum vessel

Anode and shroud

DARHT 2 Pulsed Power Systems - Accelerator

• Oil-insulated monolithic cross-section with 4 cores of Metglass (0.43-0.48 V-sec)

- Mycalex conical insulator
- Solenoid magnet and steering coils in each cell.
- Ferrite damping to reduce Q's
- Pulse Forming Networks 7-section Type-E network, 4-stage Marx.
 - -Total Z = 20Ω
 - 195-kV output
 - 1 shot/min. (12 shot/min for tests)
 - -2.02-µs flat-top (ΔV/V ≤ ± 0.5%)
 - 10-90% risetime ≤ 250-ns
 - Jitter ≤ ± 20-ns (3-σ)

DARHT 2 Beam Chopping - Kicker

• 2 μsec chopped into 4 pulses of variable width

- Weak static dipole steers beam off-axis into a septum
- Quadrupole magnet for deflection into the dump beamline.
- Electrodes driven by a solid-state modulator overcomes dipole to select beam pulse directed ahead to x-ray target

DARHT X-Ray Conversion Targets

DARHT 1 X-ray conversion target

DARHT 1 target wheel

DARHT 2 target wheel in target box

DARHT 2 distributed target for 4 pulses

Gamma Ray Camera Detector

9/9/03

The DARHT Construction Project

- Congressional line-item project (97-D102)
- Involved all UC-managed DOE national laboratories plus MIT/LL
- Two phases :

9/9/03

- Phase 1: single-pulse source and detector, DARHT facility building, 27,000 sf lab building, 1 containment vessel and clean-out process, firing site instrumentation and controls.
- Phase 2: 4-pulse/2-μsec source and detector, 6,000 sf vessel building with clean-out process, 2nd containment vessel, more firing site instrumentation and controls.

WBS	Name	Baseline Estimate (\$K)	
1.	DARHT (TPC)	\$275,880	_
1.1	Phase 1 OPC	\$8,764	
1.2	Phase 1 TEC	\$105,775	
1.3	Phase 2 OPC	\$1,343	
1.4	Phase 2 TEC	\$159,998	
			• Los Alamos

DARHT Project Management Organization

"Forward Looking" Project Management Processes

- *"Earned Value" tracking and variance analysis* done monthly to establish project performance to date and analyze deviations with respect to baseline plan. Earned value based on detailed, cost-loaded schedule updates.
- Trending Program monthly process to identify, characterize, assess, and prioritize threats to the project and to develop mitigation plans
- Current Working Estimate monthly bottoms-up update of project schedule developed from earned value calculations
- Contingency Analysis monthly update of possible future budget adjustments, contingency on remaining work, EAC, and identification of possible budget cuts that may be needed to remain within TEC.
- Project Reviews Two-tiered review process to assess technical and overall project progress and status. Monthly DOE review. Weekly Director's report.

Technical, Cost, and Schedule Contingencies

- Technical contingency found in conservative definition of CD-4 criteria
- Cost contingency developed from risk-based assessment of WBS Level-5 items. Changes as project matures.
 - mature designs well into fabrication & installation
 - 8.6% overall cost contingency rate
 - Specific elements carry much higher rates
 - » X-ray target: 39%
 - **»** Remaining accelerator fab : 24%
 - » Transport beamline : 21%
 - Installation : 13%
- 20% overall scheduled contingency
 - Results of Monte Carlo simulation of schedule with error distributions applied to estimated task durations

Requirements-Driven Scope Changes Have Characterized the Project

Experimental and Construction Schedules Integrated

DARHT activities heavily impacted by shot work

DARHT Shots

	FY01FY02FY02															FY03									FY04																					
	JI	-	M	A	M	J	J	A	S	0	N	D	J	F	M	A	M	IJ	J	1	A.	s	0	N	D	J	F	M	A	M	J	J	A	S	0	N	D	J	F	M	A	M	J	J	A	s
L																						- 1																								
L																						- 1																								
																						- 1																								
				.			1. •			l												- el 1			- I																					•
																									•																					

Note shots moved to largest open window

Combined Project & Shots

Experimental Schedule Affects DARHT CD-4 Date

The Revised Schedule for Phase 2

Transition to Commissioning and Operations

- Project Closeout March 26, 2003
- Project group dismantled
- Operations group took over all operations and commissioning.

- Final commissioning period for Axis 2.
- Optimization and operations for Axis 1.
- Dual-axis operations expected by end of 2004.

