

VIRGO CENTRAL INTERFEROMETER COMMISSIONING

Setup overview

Progression

Sensitivity (m/ $\sqrt{\text{Hz}}$)

Reliability

Systems

What we learned

François BONDU
For the VIRGO collaboration
CNRS – ILGA, Nice
July 2003

Setup up to April 2002

Setup in June and July 2002

Servo loops to lock the central interferometer

SYSTEMS

Mirror suspension and control

Inertial Damping

Long passive suspensions

Suspension last stage – Marionetta – reference mass

Local control – position memories

Light source System

Signal Detection

Environment monitoring

Interferometer control

lock acquisition

automatic alignment

Vacuum

Electronics and Software

VIRGO
Central
Interferometer
Sensitivity
Progress

Engineering Run #4, July 12-15 2002

E4 sensitivity (2/3)

E4 sensitivity (3/3)

- Several peaks visible above 700 Hz
- Some identified with west test mass internal resonances
- Others expected to come from the other test masses
- Probably driven by thermal noise (composite test masses)

E4 Reliability (1/3)

Power in recycling cavity vs. time (3 days)

- 5 unwanted losses of lock (similar to previous runs)
- lock acquisition longer than before \Rightarrow duty cycle $\sim 80\%$

E4 Reliability (2/3)

• Large duty cycles during E0, E1, E2 and E3 (smaller during E1 due to an hardware failure)

Run	Duty cycle	Longest lock (h)
E0	98%	51
E1	85%	27
E2	98%	41
E3	96%	40
E4	77%	15

• Main cause of lock losses: control software failures

Improvement in global control in progress

Cause of lock losses	# Lock losses: E0+E1+E2+E3+E4 = Tot (%)
Operator activity	2 + 1 + 1 + 0 + 1 = 5 (28%)
Hardware failures	0 + 1 + 1 + 0 + 0 = 2 (11%)
Control system failures	1 + 0 + 2 + 1 + 3 = 7 (39%)
Feedback tuning	0 + 0 + 0 + 3 + 1 = 4(22%)

• Smaller duty cycle during E4: backscatter in IMC

VIRGO

E4 Reliability (3/3)

→ Input laser beam

CITF reflected beam

- Backscattering on mode-cleaner mirror
 - \Rightarrow fringes at ITF input
 - ⇒ spurious signals in mode-cleaner control
 - ⇒ input mode-cleaner lock losses
- Consequences:
 - need to misalign recycling mirror
 - ⇒ reduction of recycling gain
 - lock acquisition longer
 - \Rightarrow smaller duty cycle

- Possible solutions: 1) use of Faraday isolator
 - 2) better mode-cleaner mirror

Solution 2) adopted so far, together with larger sidebands separation

What we learned

All functions demonstrated to work, almost within Virgo specifications, High reliability.

To be fixed:

- Input Mode Cleaner:
 - o back scatter of light
 - o low transmission / mirror pollution
 - o new suspension for the far end mirror
- Control:
 - o automatic lock acquisition
 - o second stage of frequency stabilization
 - o close more loops on automatic alignment
 - better mirror local damping required
 - o suspension monitoring
 - o global control software improved

Conclusions

Mirror suspension and control

Inertial Damping

Long passive suspensions

Suspension last stage – marionetta – reference mass

Local control – position memories

Injection System

Signal Detection

Environment monitoring and data acquisition

Interferometer control

lock acquisition

automatic alignment

Vacuum

Electronics and Software

 $rms \sim 1 um$

Attenuation $<6.10^{-8}$ (H), $<10^{-8}$ (V) @ 4 Hz

hierarchical control

precision < 1 μrad

reliable high power system

monolithic output mode cleaner

analysis of couplings – 4 Mb/s

Fsamp = 10 kHz

optical damping

lock of 2 degrees of freedom

ok

Collects and provides data efficientl

All digital loops.