

Update on the Analysis of S2 Burst Hardware Injections

L. Cadonati (MIT), A. Weinstein (CIT) for the Burst group Hannover LSC meeting, August 20, 2003

LIGO-G030428-00-Z

S2 Burst Hardware Injections

- Short, narrow-bandwidth signals (sine-Gaussians).
- Signal amplitudes should span the range from "barely detectable" to "large, but not so large as to break lock".
- Each sine-Gaussian has $Q \sim 9$; total duration $\sim Q/f_0$

Frequency <i>f_o</i> (Hz)	100	153	235	361	554	850	1304	2000
Duration (msec)	90	58	38	25	16	11	7	4.5
Time from segment start <i>t_o</i> (sec)	20	40	60	80	100	120	140	160

For details on the injections and the analysis:

- AJW's presentation at the march LSC meeting LIGO-G030081-00-Z
- http://ligo.mit.edu/~cadonati/S2/Inject/S2injections.html

Use of Harwdare Injections in the Burst Analysis

- Test of Event Trigger Generator sensitivity, time, frequency, amplitude resolution
- Validation of software injection code
- Test of correlation/coincidence techniques
- Veto safety studies
- The work presented here is preliminary: better resolution, burst parameter estimation will soon be available from the new burstDSO (J. Sylvestre)
- New calibration files recently became available will be used in comparison with software simulation engine

L1 stationarity

Uncalibrated, detected power vs time

LIGO-G030428-00-Z

LIGO Hardware vs software injections

- Dots: hardware
- Crosses: software
- Hardware injections:
 - » Q=9 sine gaussians
- Software injections:
 - Q=9 sine gaussians, at 23 times **》** uniformly distributed in the S2 playground
 - Calibration taken care of in LDAS » (respfilt function in DataCond)
- Agreement:
 - fits of response versus hpeak **»**
 - 20-50% with power law 2 constrained **»**

USED ONLINE CALIBRATION

will repeat with new calibration (V02) **»** and with implementation of the parameter estimator (h_{rss} vs h_{rss})

-sw

554 Hz

HW

___sw

1304 Hz

HW SW

20 19 5 19 18 5 18 17 5 17 16 5 16 15 5 15

log_{io}(h_{peak} [strain])

20-19.5 19-18.5 18-17.5 17-16.5 16-15.5 15

log_{io}(h_{peak} [strain])

20-19.5 19-18 5 18-17 5 17 16 5 16 15 5 15

log_{io}(h_{peak} [strain])

ETG strength (budest trigger+frequency cut) vs h_peak [strain]

ETG strength (loudest trigger+frequency cut) vs h_peak [strain]

LIGO-G030428-00-Z

Hannover

log₁₀(power)

og10(power)

L1

With EXCESS POWER

log₁₀(SNR) detected vs h_{peak}

LIGO-G030428-00-Z

Hannov

H1 injections (pre and intra-run)

H1 stationarity

H1

og₁₀(ETG strength)

log₁₀(ETG strength)

-20-19.5-19-18.5-18-17.5-17-16.5-16-15.5-15

log_{io}(h_{peak} [strain])

TFCLUSTERS

H2 - TFCLUSTERS

Hannover LSC meeting, August 20, 2003

H2 stationarity

Uncalibrated, detected power vs time

LIGO-G030428-00-Z

log_o(ETG strength)

log_o(ETG strength)

log_o(ETG strength)

log_o(ETG strength)

H2

log₁₀(ETG strength)

POWER

TFCLUSTERS

Veto safety studies (Ito, Schofield)

LIGO-G030428-00-Z

WaveMon veto safety studies (S. Klimenko)

- Used hardware injections to look for cross coupling between AS_Q and veto channels
- Select qualified triggers by setting a threshold on strength of veto clusters.
 - » Lost <4% waveMon AS_Q triggers with this cut</p>

In Progress:

- Re-run WaveMon on-line on larger number of channels and wider frequency band.
- Study of veto efficiency

