

## **Burst Search Report**

Stan Whitcomb LIGO Caltech

LSC Meeting
LIGO1 Plenary Session
18 August 2003
Hannover



## S1 Overview

- Untriggered ("Flagship") Search
  - » Data quality checks/Data selection
  - » Data conditioning (prefiltering)
    - Filter ringing
  - » Vetoes--investigated but not used
  - » Event trigger generation (two ETG's: SLOPE and TFCLUSTERS)
    - Parameter space for tuning limited
  - » Time/Frequency coincidence
    - Temporal and frequency matching cuts very broad
  - » No post-coincidence analysis
  - » Hardware and software injections to determine efficiency
  - » Statistical analysis to determine upper limits
    - Nonstationarity of data presented some problems
- Triggered Search --GRBs to identify times for "deeper" searches
  - » No useful GRB triggers during triple coincidence times
  - » Used data to develop algorithms



# Changes for S2 Analysis

## Untriggered Search

- » Data Quality (lessons learned from S1 + earlier; Zweizig & Riles)
- » Improved data conditioning
- » Vetoes: reinvestigating
- » More ETGs, better tuning
- » Improved coincidence
- » Post-coincidence processing
- » Simulations include broader (more astrophysical) range of waveforms

## Triggered Search

- » Next talk (Szabi Marka)
- Two template based searches
  - » BH Ringdowns (Rana Adhikari)
  - » Zwerger-Mueller core collapse waveforms (Masahiro Ito)
- Joint analysis with TAMA



# Data Conditioning

- Developing library of useful filters
  - » Linear predictive filters
  - » Zero phase filters
  - **»**
- Problem with S1 HP filter ringing fixed
  - » Modified Butterworth filter



LIGO- G030401-00-D

LSC Meeting

4



# Data Conditioning: Line Features and Whitening

- Line features generally contain significant power and are source of strong glitches
- Burst search engines are most sensitive when input power spectrum is white
- Remove lines
  - » Regress power lines against magnetometers and power line monitors
  - » Model other lines as stochastically excited damped oscillators and Kalman filter
- Whiten
  - » Treat sub-bands separately



Tiffany Summerscales (PSU)

# LIGO

## Vetoes

- Searched through the channels identified as useful in S1, but no dominant cause of false triggers identified
- Best results to date from LLO
  - » zGlitch : LSC-MICH\_CTRL ( $\varepsilon$ =2.4%), LSC-AS\_I ( $\varepsilon$ =7.0%)
  - » glitchMon : LSC-MICH\_CTRL ( $\epsilon$ =2.1%), LSC-AS\_I ( $\epsilon$ =1.9%), ASC-QPDY\_DC ( $\epsilon$ =4.4%)



Number of coincidences vs. Time lag

AS\_Q strength vs. Veto strength



# Event Trigger Generators (ETGs)

- Improved tuning for S1 ETGs
- Three "new" ETGs
  - » POWER: uses wavelet formalism to look for periods with excess power inceratin frequency bands
  - » BlockNormal: based on identifying change points in data statistics
  - » WaveBurst: correlates excess power in two interferometers
- Where appropriate, process triggers through common Burst DSO for parameter estimation (J. Sylvestre)
  - » Standard Parameter estimator
  - The fields describing the burst (time, frequency, SNR, amplitude, confidence) now have a physical meaning
  - » Time resolution within 10 ms
  - » Duration and BW estimators not yet implemented



## TFCLUSTERS: Tuning and Efficiency

#### Q=9 Sine Gaussian 361 Hz

- TFCLUSTERS: improved sensitivity
  - » Windowing is activated
  - » Double-threshold system
- The wrapper
  - » Reduced overhead allow faster simulations and parameter tweaking.
  - » PostProcessing also faster due to new interface with EventTool code.



Conversion factor:  $h_{rss}$  [strain/rtHz] = 0.06  $h_{peak}$  [strain]



## BlockNormal

- Compare mean  $\mu$ , variance  $\sigma^2$  of each block to the background  $\mu_0$ ,  $\sigma_0^2$  (measured over 128 sec).
- Accept block as event if

$$(\mu - \mu_0)^2 \geq X \sigma_0^2$$

or

$$\sigma^2 \geq Z \sigma_0^2$$

Stuver, Sutton, Finn, Ashley, McNabb (PSU)





## WaveBurst

Testing with Sine-Guassians

<u>-9.5-0.4-0.3-0.2-0.7 "-0" 0.1 0.2 0.3 0.4 0</u>.5

Good agreement between injected and reconstructed hrss

Good time and frequency resolution



Klimenko (UFL), Yakushin (LLO)

injected frequency, kHz

time tag, sec



## Post-coincidence Processing



- Laura Cadonati's r-statisic test
- Tests IFO outputs for similar waveforms
- False coincidence suppression TBD
- Still working on amplitude checks



# Astrophysical Simulations

Zwerger-Mueller core collapse waveforms



Improvement from S1 to S2



# BH Ringdown Search

- Template based search for BH ringdown waveforms
  - Frequencies from 75-1000 Hz, Q's fro 2-16
  - BH mass 13 350 solar masses, spin from 0 to .99 max
- Search code operational, tuning in progress
- Hardware injections
  - Strengths spanning too small to see to obvious in time domain



Rana Adhikari (MIT)





# BH Ringdown, cont.

## Preliminary analysis of hardware injections

- » Raw triggers, not clustering or maximization over templates
- » Indication that the search is able to detect things

#### Rana:

- » "Need to cluster/combine events"
- » "Need to do frequency cut"
- » "Need to do amplitude cut"
- » "Should try to see if an  $\chi^2$  test would be useful"





## Where do we go from here?

- Goal: to have S2 results to report at next LSC meeting
- Data quality/selection nearing completion
- Data conditioning SW functioning and ready for comparisons
- ETG tuning on playground data underway
- R-statistic ready for post-coincidence implementation

Possible results from template analysis