

Advanced LIGO Optics Status Report

Dave Reitze University of Florida for the Core Optics Working Group

LIGO-G030381-00-D

Main Efforts of the Core Optics WG

• Sapphire test mass R&D

- » Focus has moved to characteristics of AdLIGO-sized substrates
- » Beginning to understand asymptotic limits of performance ?

Fused silica test mass R&D

- » Interest has rekindled based on recent high Q results
- » Detailed R&D plan formulated for advancing FS to AdLIGO readiness

• Coating R&D

- » Probably the most serious technical risk facing AdLIGO optics
 - Mechanical loss is high: if no improvement, sensitivity decreases by 30%
 - Low optical loss must be preserved...
 - Second round coating R&D program initiated

Requirements for Advanced LIGO Sapphire Test Masses

P. Fritschel, et al., LIGO T010075-00; G. Billingsley, et al., LIGO-T020103-05

Mass	40 kg
Physical dimension	31.4 cm x 13 cm
Optical homogeneity	< 10 nm rms
Microroughness	< 0.1 nm rms
Internal scatter	< 10 ppm/cm
Absorption	10 - 40 ppm/cm*
Thermal noise	$Q > 2 \times 10^8$
Birefringence	< 0.1 rad
Polish	< 0.9 nm rms

*assumes active thermal compensation at high end

LIGO-G030381-00-D

Large Sapphire Substrates

LIGO-G030381-00-D

Optical Absorption in Sapphire

- large number of small samples investigated using interferometric photothermal displacement spectroscopy at Stanford (R. Route, et al.)
 - » Crystal Systems: large variance in absorption: best 10 ppm/cm, worst 600 pm/cm, average 40-100 ppm/cm
 - » Rubicon: initial pieces show > 100 ppm/cm absorption
- High temperature, rapid cool annealing in oxygen reduces
 absorption 2X
 - » 20-50 ppm/cm
- Focus moves to characterization of large sapphire pieces
 - » SMA sapphire inhomogeneity studies on 314 mm diameter substrates

Absorption inhomogeneity in sapphire – thermal compensation

R. Lawrence, M. Zucker, MIT, see G020502-00-R.

Idea: 'Inverse spot' heating using CO₂ laser

For features < 6 mm diameter: P_{abs,PV}*Area_{feature} < 3000 ppm/mm²

LIGO-G030381-00-D

LIGO Scientific Collaboration

8

Identification of Trace Elements in Sapphire

S. McGuire (SUBR), G. Lamaze and E. Mackey (NIST)

- Instrumental Neutron Activation Analysis (INAA) to assess correlations between 1064 nm absorption and presence of impurity states
- No smoking gun...

Element	Low Loss	High Loss	SRM 1575a	Certified Value
Sc	0.06 ± 0.02 ppb	0.20 ± 0.04 ppb	10.8 ± 0.8 ppb	10.1 ± 0.3 ppb
Cr	9 ± 2 ppb	8 ± 1 ppb	0.36 ±0.03 ppm	0.3 - 0.5 <u>ppm</u> range
Fe*	≤1 ppm	≤1 <u>ppm</u>	45 ± 2 ppm	46 ± 2 ppm
Co	≤1 ppb	1.2 ± 0.4 ppb	68 ± 3 pp b	61 ± 2 ppb
Zn	30 ± 3 ppb	40 ± 4 ppb	39 ± 2 ppm	38 ± 2 ppm
Sb	≤2 ppb	≤2 ppb	10 ± 3 ppb	not certified
La	7 ± 0.4 ppb	4 ± 0.4 ppb	53 ± 7 ppb	not certified

LIGO-G030381-00-D

Reducing Absorption in Large Sapphire Substrates

R. Route, Stanford

- Best reduction seen when using rapid cooldown (> 400° C/hr)
- Difficult to achieve large gradients in large substrates
- Apply cold plate to aid cooling

Mechanical Loss in Large Substrates - Sapphire

• Qs in excess of 2x10⁸ !!!

- P. Willems and D. Busby, LIGO- T030087-00-R
- frequency dependence measured; Q decreases with increasing frequency
- FE model \rightarrow good agreement with measured Qs, frequency dependence

Fused Silica Test Mass Requirements

P. Fritschel, et al., LIGO T010075-00; G. Billingsley, et al., LIGO-T020103-05

Mass	40 kg
Physical dimension	34 cm x 20 cm
Optical homogeneity	< 10 nm rms
Microroughness	< 0.1 nm rms
Internal scatter	< 10 ppm/cm
Absorption	0.5 – 1.0 ppm/cm*
Thermal noise	Q > 1 x 10 ⁸
Birefringence	< 0.1 rad
Polish	< 1.2 nm rms

*assumes active thermal compensation

LIGO-G030381-00-D

Sapphire vs. Fused Silica: Mechanical Loss

 sapphire loss
 dominated by thermoelastic noise

 fused silica looks much better for large Q's

> not plagued by thermoelastic noise

LIGO-G030381-00-D

Mechanical Loss in Large Substrates – Fused Silica

P. Willems and D. Busby, LIGO- T030087-00-R

LIGO-G030381-00-D

Reducing Mechanical Loss in Fused Silica

- bulk and surface contributions to mechanical loss; total depends on volume/surface ratio
 - » Lossy surface layer ('Bilby layer') dominates loss
 - » Bilby layer caused by polishing and subsurface damage (down to 1 μm)
- Magnetorheological finishing (MRF)
 - » Final polishing technique does not induce subsurface damage
 - » Large shear stress, negligible normal stress applied to surface

Advanced LIGO Test Mass Coatings: Requirements

Parameter	Sapphire goal	Sapphire requirement	Fused Silica goal	Fused Silica requirement
Mechanical loss ¹	2 x 10 ^{-5*}	6 x 10 ^{-5*}	1 x 10 ⁻⁵ ‴	3 x 10⁵‴
OpticalAbsorption ²	0.5 ppm	1 ppm	0.2 ppm	0.5 ppm
Thermal expansion ³	5 x 10 ⁻⁶ /K*	< 2 x 10 ^{.5} /K [*] >1 x 10 ^{.6} /K [*]	5 x 10 ⁻⁷ /K ^{**}	< 2 x 10 ⁻⁶ /⊀ [™] >1 x 10 ⁻⁷ /₭ [™]
Birefringence ⁴	1 x 10 ⁻⁴ rad	2 x 10 ^{.4} rad	-	-
Scatter ^ø	1 ppm	2 ppm	1 ppm	2 ppm
Thickness uniformity⁵	10 ⁻³ (over 21.5 cm diameter) 10 ⁻² (over 33.0 cm diameter)	10 ⁻³ (over 21.5 cm diameter) 10 ⁻² (over 30.0 cm diameter)	10 ⁻³ (over 21.5 cm diameter) 10 ⁻² (over 33.0 cm diameter)	10 ⁻³ (over 21.5 cm diameter) 10 ⁻² (over 30.0 cm diameter)
ITM HR transmission	-	5 x 10 ⁻³ ±2.5 x 10 ⁻⁴	-	5 x 10 ⁻³ ±2.5 x 10 ⁻⁴
ETM HR transmission	5 ppm	10 ppm	5 ppm	10 ppm
Test Mass HR matching 2 (T ₁ -T ₂)/(T ₁ +T ₂) ⁶	5 x 10 ⁻³	1 x 10 ^{.2}	5 x 10 ⁻³	1 x 10 ⁻²
AR reflectivity	-	200 ±20 ppm	-	200 ±20 ppm

G. Harry, et al., LIGO-C030187-00-R

LIGO-G030381-00-D

Coating Mechanical Loss

Peter Sneddon, U. Glasgow

• Both *thermoelastic loss*^{**} and *loss resulting from residual dissipation* are of significance for coating thermal noise (increasing the overall thermal noise level by a few 10s of percent).

- Analysis of SiO₂/Ta₂O₅, SiO₂/Al₂O₃ and Al₂O₃/Ta₂O₅ coatings suggests that Ta₂O₅ has greater residual loss than SiO₂ and Al₂O₃
 - SiO₂ and Al₂O₃ have frequency-dependent loss
- For a silica substrate:
 - a SiO₂/Ta₂O₅ coating has the lowest thermoelastic noise and the lowest total thermal noise, though is still dominated by the loss in the Ta₂O₅.

** V. Braginsky, et al., Phys. Lett. A 312 244

Coating Mechanical Loss (cont'd)

• For a sapphire substrate:

Peter Sneddon, U. Glasgow

- a SiO₂/Al₂O₃ coating has the lowest overall thermal noise. However, this can only be reduced by a factor of ~ 2 before the thermoelastic floor is reached.
- an AI_2O_3/Ta_2O_5 coating has a lower thermoelastic noise floor and could have a lower total thermal noise if the residual loss in the Ta_2O_5 can be reduced.
- Suggests the way forward is to reduce the loss of the Ta_2O_5 , or find an alternate high-index material with a lower mechanical loss and similar thermoelastic properties. This should reduce the total coating thermal noise for both silica and sapphire mirrors.

LIGO-G030381-00-D

Coating Mechanical Loss

LIGO-G030381-00-D

Coating Mechanical Loss: Other Areas of R&D

- Characterization of Young's modulus
 - » Matching Y_{coating} and Y_{substrate} minimizes coating strain
 - » P. Khuri-Yakub (Stanford) characterization of coating elastic properties
 - Acoustic reflection technique
 - For the most part, agree with known properties
- Coating thermal expansion-induced strain
 - » Absorption -> heating -> differential thermal expansion -> strain
 - » Initial calculations (Coyne and Srinivasan) on small optics
 - Surface deformations predicted for different coatings/substrates
 - » Measurements underway at CIT
- High throughput (rapid turn-around) Q coating measurements
 - » Development of fiber-based readout for measuring coated thin-flexures
 - » Collaborative effort between R. DeSalvo (CIT), J. M. Mackowsky (SMA-Virgo), and Virgo

Sapphire Test Mass Requirements Redux

Legend: 🗸 = 'good'	() = 'close' ? = 'jury still out'
Mass	40 kg 🗸
Physical dimension	31.4 cm x 13 cm , 🗸
Optical homogeneity	< 10 nm rms 🗸 **
Microroughness	< 0.1 nm rms ()
Internal scatter	< 10 ppm/cm ?
Absorption	10 - 40 ppm/cm*()
Thermal noise	$Q > 2 \times 10^8 $ V
Birefringence	< 0.1 rad ?
Polish	< 0.9 nm rms (🔨)

LIGO-G030381-00-D

** engineered solution

Fused Silica Requirements Redux

Mass	40 kg 🗸
Physical dimension	34 cm x 20 cm 🔨
Optical homogeneity	< 10 nm rms
Microroughness	< 0.1 nm rms())
Internal scatter	< 10 ppm/cm?
Absorption	0.5 – 1.0 ppm/cm()
Thermal noise	$Q > 1 \times 10^8$,?
Birefringence	< 0.1 rad \/ ,
Polish	< 1.2 nm rms

Conclusions

- Sapphire R&D focused on characterization of large substrates
 - » Pleasant surprises: large Q!!
 - » Unpleasant surprises: large absorption inhomogeneities

• Fused silica R&D moving forward

- » A viable alternative to sapphire
- Coating R&D is a high priority
 - » Minimizing mechanical loss essential for AdLIGO
 - » Much effort, \$ being spent to beating the coatings into submission
- Down select date: March-April 2004
 - » Further delay impacts AdLIGO schedule