## Current LIGO Commissioning Activities

LIGO Seminar, Caltech August 1, 2003 Daniel Sigg, LIGO Hanford Observatory



#### Aerial View of the LIGO Sites



#### LIGO Hanford Observatory

# LIGO Livingston Observatory

LIGO seminar, Caltech



#### **Time Line**





# Major Achievements in the Last 2 Years

- Four orders of magnitude improvement in sensitivity (at 150Hz)
- All 3 interferometers operate routinely in powerrecycled mode
  - Kilowatts in the arm cavities
  - Common mode control to the laser
  - Auto-alignment system / Optical levers for local damping
  - Great improvements in digital controls
    - Digital suspension controller
- First science data

#### Strain Sensitivity for the LLO 4km Interferometer

31 January 2003





#### 2nd Science Run



Frequency (Hz)

LIGO seminar, Caltech





#### **Goals for Next Science Runs**

#### □ Low frequency noise

- Reduce acoustic couplings (S3)
- Reduce noise from auxiliary degrees-of-freedom (S3)

#### □ High frequency noise

- More light to reduce shot noise (S3)
- Thermal compensation to make recycling cavity stable (S4)

#### Duty cycle

- Full alignment control (S3)
- Develop seismic pre-isolator for LLO (S4)



# List of Tasks (1)

- Investigate thermal lensing
- Optical gain increase of LSC photodiodes
- Reduce acoustic coupling
- □ Improve shot noise sensitivity
- □ Finish auto-alignment system
- Initial Alignment (WFS5)
- □ Seismic retrofit at LLO
- 2K ITMX replacement
- □ Fix Schnupp asymmetry
- □ Fix LLO recycling cavity length



# List of Tasks (2)

- □ Tune laser, replace lossy pre-mode cleaner
- Install remote power dial
- □ Improve laser power stabilization
- □ Finish v stabilization servos
- □ Reduced quadrature signal (ASI servo)
- Digital IO alignment system
- □ Add more length sensing channels
- □ RFI cleanup: linear power supplies
- □ Install atomic clocks for timing diagnostics
- Photon calibrator



# **Optics**

- Optics quality is (almost all) good
- Recycling gain meets or exceeds goals
  - > L1: Gain of 45- 50 seen
  - ➢ H1: Gain of 40-45
  - ➤ H2: Cause of low recycling gain (20) found and fixed
- Contrast defect meets or exceeds goals
  - > H1:  $P_{as}/P_{bs} = 6 \times 10^{-4}$







#### 2 ITMX Anti-Reflective Coating





# **High Power Operations**



- Dynamic range problem: 1000x
- Signal in wrong quadrature dominant!
- Use multiple detectors at antisymmetric port
- Need protection for photodetectors
- Need protection for suspension wires!



# **Recycling Cavity Degeneracy**

#### □ RF sideband efficiency is very low

- H1 efficiency: ~6% (anti-symmetric port relative to input)
- lack of ITM thermal lens makes g<sub>1</sub>·g<sub>2</sub> > 1 (unstable resonator)



#### **Bad mode overlap!**

# LIGO Optical Gain Increase for LSC Photodiodes

#### Dynamic range problem: 1000x

- > Locking ~100  $\mu$ A / running ~100 mA
- Separate PDs for locking (low power) and running (high power)
- Remote dial for laser power

AS



LIG

#### AS Port

#### **ASI Servo**

# □ AS quadrature signal dominant! □ Multiple AS port detectors > H1: P<sub>AS</sub> = 500-600 mW ⇒ 4 detectors

> L1:  $P_{AS} = \sim 20-30 \text{ mW} \Rightarrow 1 \text{ detector}$ 

GO seminar, Caltech



# Adaptive Feedback Control for Power Increase





# **Thermal Lensing**





# **Thermal Compensator Proposal**

□ Laser: 10-30W CW TEM<sub>00</sub> CO<sub>2</sub> (10.6µm)





#### **Radiation Pressure**



Ch 12: H2:SUS-ITMY\_OPLEV\_YERROR



Arm cavity angular shift 2cm de-centering at 5kW



# Alignment Instabilities in High Power Optical Cavities

#### Misaligned cavity & de-centered beams

- Torque depends on alignment
- Purely geometrical
  - Misalignment displaces
    beams
    on optics
  - Torque depends on alignment





## **Acoustic Noise Coupling**

Peaks occur in 80-1000 Hz band, at a level 10-100x the design sensitivity

□ Source for H1/H2 coincidences(?)

#### Acoustic Excitations





# **Acoustic Mitigation**





# Output Mode Cleaner(?)

#### □ Small fixed spacer triangular cavity

- Thermally controlled
- In vacuum on seismic isolation
- Advantages:
  - Reduces light level (higher order modes are filtered out)
  - Solves acoustic coupling problem
  - Reduces fringe offsets coming from higher order modes
  - Reduces back scattering problems
  - Most likely reduces quadrature signal problem

#### Disadvantages:

- Fairly huge effort!
- > Photodetectors not readily accessible, must be vacuum compatible
- Thermal control slow to acquire



## Auto-Alignment System





# Initial Alignment Using Wavefront Sensors



LIGO seminar, Caltech

# LIGO Initial Alignment: Results for Y Arm





#### Atomic Clocks & Photon Calibrator

#### □ Proposed system:

- Central atomic clock
- Timing distributed to all buildings over fiber
- Check local GPS clocks
- Portable rubidium clock
- $\succ$  Required precision: 10  $\mu$ s
- Synchronize photon calibrator













#### **Active Seismic Isolation**

#### Hydraulic External Pre-Isolator (HEPI)



LIGO seminar, Caltech



## Active Seismic Isolation: How it Works





# Active Seismic Isolation: Preliminary Results





#### 





# Summary

#### **Currently ongoing efforts:**

- □ High power operations
- □ Acoustic mitigation
- □ Full alignment control
- □ Seismic pre-isolator development

S3 in November/December