

ASTROPHYSICS

Kip S. Thorne CaRT, California Institute of Technology

NSF Advanced LIGO Review Pasadena, 11 June 2003

LIGO-G030311-00-R

From Initial Interferometers to Advanced

Conventions on Source/Sensitivity Plots

Assume the best search algorithm now known

- Set Threshold so false alarm probability = 1%
 - » For rare broadband signals: on tail of Gaussian; increase S/T by ~10% →
 LIGB-B1303false alarm

Overview of Sources

- Neutron Star & Black Hole Binaries
 » inspiral
 - » merger

- Spinning NS's
 - » LMXBs
 - » known pulsars
 - » previously unknown
- NS Birth (SN, AIC)
 - » tumbling
 - » convection
- Stochastic background
 - » big bang "IGgarfy30311/26956

Science From Observed Inspirals: NS/NS, NS/BH, BH/BH

hx

time

time

6

• Relativistic effects are very strong -- e.g.

h_

- » Frame dragging by spins → precession → modulation
- » Tails of waves modify the inspiral rate

Information carried:

LIGO

» Masses (a few %), Spins (?few%?), Distance [not redshift!] (~10%), Location on sky (~1 degree)

 $-M_{chirp} = \mu^{3/5} M^{2/5}$ to ~10⁻³

• Search for EM counterpart, e.g. γ -burst. If found:

» Learn the nature of the trigger for that γ-burst LIGO-G030311-00-R

» deduce relative speed of light and gw's to ~ 1 sec / $3x10^9$ yrs ~ 10^{-17}

Neutron Star / Black Hole Inspiral and NS Tidal Disruption

Black Hole / Black Hole Inspiral and Merger

BH/BH Mergers: Exploring the Dynamics of Spacetime Warpage

Probing Intermediate Mass BH's with Small BH's

- In globular clusters: BH-BH capture formation, merger, formation, merger, ... in globular clusters → intermediatemass BH: 100 - 1000 Msun [Cole Miller]
- Plunge of few Msun BH into few ~100 Msun BH
- Ringdown studies:
 ~ 10 per year with
 M/m > 60; more for
 smaller M/m

Massive BH/BH Mergers with Fast Spins - Advanced IFOs

LIGO Spinning NS's: Pulsars in Our Galaxy

Spinning NS's: Pulsars in Our Galaxy [narrow-banded interferometer]

Low-Mass X-Ray Binaries in our Galaxy

- Rotation rates ~250 to ~600 revolutions / sec
 - Why not faster?
 - Bildsten: Spin-up torque balanced by GW emission 10⁻²² torque
- If so, & steady state: observed
 X-ray flux → GW strength
- Combined GW & EM
 obs's

 information about:
 - crust strength & structure, temperature dependence of viscosity, ...
 10⁻²⁴

LIGO-G030311-00-R

NS Birth: Tumbling Bar; Convection

Born in:

- » Supernovae
- » Accretion-Induced Collapse of White Dwarfs
- If very fast spin:
 - Centrifugal hangup **》**
 - **Tumbling bar** episodic? (for a few sec or min)
 - If modeling gives enough waveform information, detectable to:
 - Initial IFOs: ~5Mpc (M81 group, ~1 supernova/3yr)
 - Advanced IFOs: ~100Mpc (~500 supernovae/yr)
- If slow spin:
 - » Convection in first ~1 sec.
 - » Advanced IFOs: Detectable only in our Galaxy (~1/30yrs) LIGO-G030311-00-R GW / neutrino correlations!

Complementarity of LIGO & LISA

LIGO

- High-frequency band: ~10Hz to ~1500Hz (analog of optical astronomy)
- Neutron-star studies:
 - » Tidal disruption by BH
 - » Low Mass X-Ray Binaries
 - » Pulsar Spins

LIGO

- Study stellar mass BH's (~3 Msun to ~1000 Msun)
- Study merger of NS and BH binaries in distant galaxies
- Study early universe at age ~10⁻²⁵ sec (-00⁹ Gev)

LISA

- Low-frequency band: ~0.0001 Hz to ~0.1 Hz (analog of radio astronomy)
- Cannot study neutron star physics

- Study supermassive BH's (~100,000 to 10,000,000 Msun)
- Study White dwarf, NS, and BH binaries in our galaxy, long before merger
- Study early universe at age ~10⁻¹² sec (~100 GeV)

Stochastic Background from Very Early Universe

• GW's are the ideal tool for probing the very early universe -- "messenger" from first one second

LIGO

creates

Space & Time

of our universe

LIGO-G030311-00-R

- Present limit on GWs
 - » From effect on primordial nucleosynthesis
 - » Ω = (GW energy density)/(closure density) ≤ 10⁻⁵

Stochastic Background from Very Early Universe

LIGO

18

Grav'l Waves from Very Early Universe. Unknown Sources

- Waves from **standard inflation**: $\Omega \sim 10^{-15}$: much too weak
- BUT: Crude superstring models of big bang suggest waves might be strong enough for detection by Advanced IFOs
- Bursts from cosmic strings: possibly detectable by Initial IFOs
- Energetic processes at (universe age) ~ 10⁻²⁵ sec and (universe temperature) ~ 10⁹ Gev → GWs in LIGO band
 - » phase transition at 10⁹ Gev

- » excitations of our universe as a 3-dimensional "brane" (membrane) in higher dimensions: [C. Hogan]
 - Brane forms wrinkled
 - When wrinkles "come inside the cosmological horizon", they start to oscillate; oscillation energy goes into gravitational waves
 - LIGO probes waves from wrinkles of length ~ 10^{-10} to 10^{-13} mm
 - If wave energy equilibrates: possibly detectable by initial IFOs
- Etsanfipile¹ b^{een}fitherto
 UNKNOWN SOURCE

Conclusions

- LIGO's Initial Interferometers bring us into the realm where it is plausible to begin detecting cosmic gravitational waves.
- With LIGO's Advanced Interferometers we can be confident of:
 - » detecting waves from a variety of sources
 - » gaining major new insights into the universe, and into the nature and dynamics of spacetime curvature, that cannot be obtained in any other way