

Press Conference on the Analysis of the first LIGO data

Results presented by the LIGO Scientific Collaboration APS meeting, April 2003, Philadelphia

Erik Katsavounidis, LIGO-MIT

Sessions chaired by Finn (PSU) and Brady (UWM):

Ed Daw (LSU): Search for Bursts

Patrick Brady (UWM): Search for Inspirals

Joe Romano (UTB): Search for Stochastic Radiation

Maria Alessandra Papa (AEI-MP): Search for Continuous Waves

Erik Katsavounidis (MIT): Overview of searches

LIGO-G030177-00-D

LIGO LIGO's First Science Run (S1)

LIGO S1 Run

"First Upper Limit Run"

- **23** Aug-9 Sept 2002
- ■17 days
- All interferometers in power recycling configuration

GEO in S1 RUN

Ran simultaneously In power recycling Lesser sensitivity

•Triple Coincidence: L1, H1, and H2: duty cycle 23.4%; total 95.7 hours

LIGO's First Data Analyses

- No detection expected.
- Scientific Milestone: first coincidence observation by multiple broad-band interferometers at best ever achieved sensitivities.
- Technical analyses:
 - » Establish and illustrate methodology.
 - » End-to-end analysis checks.
 - » Results meet expectations from sensitivity.
 - » To be used in **future** running.

LIGO

Bursts and Inspirals

Burst sources: known
(supernovae, black hole merges)
and unknown emitting short
transients of gravitational radiation
of unmodeled waveform: 1.4
events/day.

Inspiral sources: orbital-decaying neutron star binaries: bound their rate at below R< 164/yr/(MWEG).

LIGO Stochastic and Continuous Waves

 10^{-13}

S1 sensitivities 10^{-14} 10^{-15} amplitude 10^{-16} 10^{-17} 10^{-18} 10^{-19} 10^{-20} 10-21 gravitational 10-22 10^{-23} 10^{-24} 10^{-25} 10^{-26} 10-27 10^{-28} 100 1000 frequency (Hz)

Stochastic sources: cosmological or astrophysical may contribute to universe's critical density:

 $\int_{0}^{\infty} (1/f) \Omega_{GW}(f) df = \frac{\rho_{GW}}{\rho_{critical}}$ constrain Ω_{GW} (40Hz - 314 Hz) < 72.4

Continuous sources: known rotating neutron stars emitting waves due to small distortions of their shape: constrain amplitude, ellipticity. For PSR J1939+2134: h_o<1.0x10⁻²² ε<7.5x10⁻⁵

LIGO Science Has Started

- LIGO's plan of interleaved science and engineering runs is bringing the instruments to their design sensitivity while giving the opportunity for first science results.
- Results close to expected, confidence that our design sensitivity is imminent and producing the targeted science results.
- Second science run ("S2") began 14 Feb and will end 14 Apr:
 - » Sensitivity is ~10x better than S1
 - » Duration is ~ 4x longer
 - Bursts: rate limits: 4X lower rate & 10X lower strain limit
 - Inspirals: reach will exceed 1Mpc -- includes M31 (Andromeda)
 - Stochastic background: limits on $\Omega_{\rm GW}$ < 10⁻²
 - Periodic sources: limits on h_{max} ~ few x 10⁻²³ (ϵ ~ few x 10⁻⁶ @ 3.6 kpc)
- Ground based interferometers are collaborating internationally:
 - » LIGO and GEO (UK/Germany) during "S1"
 - » LIGO and TAMA (Japan) during "S2"