

Burst Analysis in Wavelet Domain for multiple interferometers

LIGO-G030132-00-Z

Sergey Klimenko

University of Florida

- Analysis strategy
- Data analysis pipeline
 - **➤** WaveMon veto generator (S.Klimenko, see LIGO note G020383-00-Z)
 - WaveBurst event generator (S.Klimenko, I.Yakushin)
- Analysis algorithms
- Some results for S1
- Summary & Plans

Analysis strategy

- Triggers are generated independent for each IFO
- GW candidates are generated on the final coincidence step

event trigger generators

- pixels produced by artifacts are clustering together very powerful idea behind the Time-Frequency cluster analysis
- use coincidence to enhances it. $(powerful_idea)^2$
- coincidence is used before the events are generated → approach often used in HEP.

Wavelet Transform

- Optimize search by selecting wavelet type & decomposition tree
- detail coefficients d_i represent data in different frequency bands
 - \rightarrow df = f/2, f/4, f/8, dyadic, df = f/n, linear basis

wavelet time-scale(frequency) plane

- For short (therefore broadband) bursts dyadic WT should be good.
- For long signals, like inspirals, binary WT could be optimal
- Several wavelet transforms are implemented in the datacondAPI
- Currently used in WaveBurst:
 - > interpolating bi-orthogonal, Daubechies, Simlets
 - binary wavelet tree (linear frequency scale)

Percentile Transform

- given a sample with amplitude A, define its percentile amplitude as a=1/f, where f is fraction of samples in the population with absolute value of amplitude greater then |A|
- Equivalent to calculation of rank statistics → non-parametric
- percentile amplitude distribution function: $P(a)=1/a^2$
 - > the same for all wavelet layers

raw → percentile TF plots

Percentile Thresholding Rule

- threshold on percentile amplitude
- select a certain fraction of samples (set T-F occupancy)
- don't care about the data distribution function
- one possible way of "de-noising of wavelet data"

Coincidence Rules

- Given local occupancy $O_i(t,f)$ in each channel, after coincidence the cluster occupancy is $O_C(t,f) = \alpha \cdot O_1(t,f) \cdot O_2(t,f)$
- For strict coincidence $O_i(t,f) = p^2$ for random pixels produced by noise. for example if p=0.1, average occupancy after coincidence is 0.01
- WaveBurst can use various coincidence policies → allows customization of the pipeline for specific burst searches.

strict coincidence

coincidence TF plot for LSC-AS_Q && IOO-MC_F

- coincidence allows
 - > set a low threshold at the previous (thresholding) step
 - > "build" clusters with known false alarm rate, determined by random clustering of pixels

Cluster Analysis

cluster – T-F plot area with high occupancy

Cluster halo

Cluster Parameters

size – number of pixels in the core

volume – total number of pixels

density – size/volume

amplitude – maximum amplitude

power - wavelet amplitude/w50

energy - power x size

asymmetry – (#positive - #negative)/size

likelihood $-\log(\Pi A_i)$

neighbors – total number of neighbors

frequency - core minimal frequency [Hz]

band - frequency band of the core [Hz]

time - GPS time of the core beginning

interval - core duration in time [sec]

'orthogonal' data sets

- WaveMon/WaveBurst generate clusters of three types:
 - candidate clusters -> potential GW bursts
 - off-time clusters (due to random coincidence of glitches) > veto tuning
 - → "false alarm" clusters (due to random clustering of noise) → threshold settings

WaveMon rates for coincidence with H2:LSC-AS_Q quiet channel S1 data hot channel

selection cuts: cluster likelihood $L = \log(\prod A_i)$

$$L = \log(\prod A_i)$$

- L threshold can be set a priori based on the false alarm rate
 - \rightarrow does not need tuning \rightarrow perfect for real time processing
 - \triangleright Only L threshold is applied at run time \rightarrow ETG output rate \sim 0.2Hz

selection cuts: cluster "energy"

$$E = \sum \left(\frac{w_i - w_0}{0.67w_{50}}\right)^2$$

 w_i – wavelet amplitude w_0 – distribution median w_{50} – median of $|w_i$ - $w_0|$

- For Gaussian noise $E=\chi 2$
- Energy cut is set based on the false alarm rate and it is used for post-processing event selection

VETO

 After applying selection cut, remaining events are suppose to be removed with vetoes

Veto events can be generated by DMT monitors and by ETGs itself.

• Off-time data set (red dots) is used for selection of effective veto

channels

work in progress on optimization of veto strategy

Other issues

- Simulation study using injected bursts:
 - pipeline consistency check.
 - ➤ efficiency study for different coincidence policies using bursts injected randomly in time and with random delay between detectors.
- X-correlation between burst candidates found in two detectors. Could be significant enhancement of the search pipeline. (see Malik's talk)

Conclusion & Plans

WaveBurst ETG

- > produces GW burst candidates for a coincidence of two detectors
- ▶ uses non-parametric statistics → allows a priori threshold settings for the on-line operation.
- > produce event triggers with known false alarm rate

WaveMon monitors the detector glitch performance

- Can help identify the source of glitches in the GW channel by looking at frequency content and correlation with auxiliary channels
- produces veto triggers

Plans

- Use S1 as a playground for WaveBurst pipeline.
- Process S2
- > Preparations for S3