

Violin Modes

S2 Line Noise Investigation S.Klimenko, F.Raab, M.Diaz, N.Zotov (thanks to Gaby and Andri for discussions)

LIGO-G030130-00-Z

presented by S. Klimenko

• Outline

- Tracking of violin modes in S2
- > Work in progress
- Conclusion

• Narrow lines are monitored with the LineMonitor

$$I(t) = \sum_{n} a_{n} \cdot \cos(\Psi_{n}(t)) = \sum_{n} a_{n} \cdot \cos(2\pi n f t + \phi_{n})$$

- Integration time 1 min
- > we assume that the harmonic's amplitudes do not change much during the integration time T (line width << 1/T)
- The LineMonitor estimates a_n , f and ϕ_n
 - > Violin frequencies are known, measure amplitude and phase.
 - Line parameters are constantly measured and stored in trend files
 - Two harmonics for each mode are monitored. Some first harmonics and most of the second harmonics are not visible for 1 min integration time

- *A* pendulum vibration amplitude
- *a* mirror motion amplitude (<<*A*)
- *V* amplitude measured by LineMonitor in ADC counts, converted to *a* using calibration
- v wire-mirror coupling: $v = \frac{m}{\pi M} \approx 8.3 \cdot 10^{-6}$

• Thermal noise: $S(\omega) = \frac{4kT}{m\omega_0^2} \cdot \frac{\omega_0^2}{\omega} \cdot \frac{\omega_0^2 \Phi(\omega)}{(\omega_0^2 - \omega^2)^2 + \omega_0^4 \Phi^2(\omega)}$

> quality factor $Q = \Phi^{-1}(\omega_0) = \omega_0 / \Delta \omega$

• Wire/Mirror motion:

$$\left\langle A^2 \right\rangle = \frac{kT}{m\omega_0^2} \approx (1820f)^2$$
$$\left\langle a^2 \right\rangle = v^2 \frac{kT}{m\omega_0^2} \approx (15.1mf)^2$$

M

• Thermal noise from measured Q's of H2 violin modes

- Fred: e-log 9/8/02
- The raw data (red circles) is compared to the estimated thermal noise (blue curve)

 $\sqrt{\langle a^2 \rangle} \sim 14 - 20 mf$

343.754	39,000	
343.814	143,000	ETMX
344.051	70,000	ETMX
344.110	143,000	
349.201	116,000	
349.245	90,000	
349.282	90,000	
349.659	175,000	

Calibrated Amplitude

$$a(t) = V(t) \cdot R(t) = V(t) \cdot \frac{1 + \gamma(t) (C_0(f) R_0(f) - 1)}{\alpha(t) C_0(f)}$$

- R_0 response function
- C_0 sensing function
- *H*₀ open loop gain
 (0.376 @ 344 Hz)
- γ, α t-calibration

- P(a) Raylegh distribution
- $P(a^2)$ exponential
 - > slope *s* gives $\langle a^2 \rangle$

=15.8*mf*

Amplitude distribution

exponential

S.Klimenko, LSC meeting, March 2003

non-exponential tail

- > can be excluded from the fit
- LineMon outlier triggers could be used as veto for the analysis.
- shifted Rayleigh distribution

 $\log(P(a^2)) = s(a^2 + a_s^2)$

slope is not affected by shift

L1 Violin thermal noise

very preliminary

frequency , Hz	displacement noise, mf
343.06	14.5
343.48	15.8
343.65	12.9
344.42	19.9
346.65	16.6
346.94	18.1

stat. error ~ 1%

expected noise for simple mechanical model: 15.0-15.5 mf (depends on M and ω)

- Thermal excitation of the violin resonances is observed
 - > measured noise: 13-20 mf
 - > expected noise: 15.0-15.5 mf
 - > more accurate mechanical model should be used for better agreement between measured and calculated noise.
 - the noise measurement could be affected by servo.
- Plans
 - > do analysis of H1 and H2 modes (Sergey)
 - calculate thermal noise from measured Q-factors and compare with the LineMonitor results (Fred)