

Institute of Applied Physics of the Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Preliminary and remote *in situ* monitoring of weak distortions in Core Optics

Ilya Kozhevatov, Efim Khazanov, Anatoly Poteomkin, Anatoly Mal'shakov, Nikolay Andreev, Andrey Shaykin, Alexander Sergeev

- lacktriangle Preliminary monitoring of Core Optics with $\lambda/1000$ accuracy.
- **♦** Remote *in situ* monitoring of weak distortions of End Test Mass.

Large aperture white-light phase-modulated interferometer (WLPMI) for preliminary control of LIGO Core Optics

- 1 sample
- 2 optical table
- 3 damping mount
- 4 reference plate
- 5 collimating lens
- 6 beam splitters
- 7 spatial filter
- 8 lenses
- 9 fiber bundle
- 10 spectral modulator
- 11 white light source
- 12 aperture
- 13 He-Ne laser
- 14 projection lens
- 15 CCD-camera
- 16 computer
- 17 control unit

Large aperture white-light phase-modulated interferometer (WLPMI) for preliminary control of LIGO Core Optics

White light source

Lens

Beam splitters

Collimating lens

Reference plate

Sample, 25 cm diameter

Damping mount

White Light Measurement Interferometer for preliminary Core Optics control.

White Light *In Situ* Measurement Interferometer (WLISMI)

Standard interferometers	Proposed interferometers
Measurement of optical length	The proposed method relies on measurements of
of air spacing between two	the phase of interferogram of radiation reflected
surfaces.	from two surfaces of one sample under study.
In profilometers one of them is	
a sample surface, and the other	The precise phase measurements are ensured by the
is a reference surface.	modulation of the probing radiation spectrum .
The problem of precise	The method provides a two-dimensional pattern of
measurement of phase in the	a sample's optical thickness distribution
interferogram is solved by	simultaneously over the whole aperture.
phase modulation according to	
a known time law.	The method is applicable to remote testing of
	optical elements with flat, spherical and cylindrical
	surfaces, and also with a wedge between them.

White Light *In Situ* Measurement Interferometer. Experimental setup

- 1 light source;
- 2 objective;
- 3 sample;
- 4 ocular;
- 5 measurement interferometer;
- 6 unit for synchronization and control;
- 7 CCD camera;
- 8 PC computer;
- 9 modulating mirror;
- 10 adjusting mirror;
- 11, 13 motors;
- 12 wave front shaper

Remote *in situ* monitoring of weak distortions emerging under auxiliary laser heating

- 1 WLPMI
- 2 NHS and PIT
- Optical sample bulk heating by the fundamental or second harmonic of Nd:YAG laser at a power of 10-20 W
- Surface heating with the use of a CO₂ laser at power of several Watts
- Inducing contamination of a small region (characteristic size of 20-100 micron) on the optical element's surface and focusing of low-power laser radiation (<100 mW) on it

White Light *In Situ* Measurement Interferometer. How to install in LIGO interferometer?

Experimental results. No heating.

Experimental results. Heated by CO₂ laser.

White Light *In Situ* Measurement Interferometer. Important points to install it ETM of LIGO-1.

- 1. Interfering beam propagate mostly on the same path. The paths are different in the vacuum chamber.
- 2. Interference pattern appears only if three following item coincide

optical paths;

angles of beams wave front;

planes where image of the source is related

This tripled coincidence neglects influence of Fresnel reflections on the interference.

White Light *In Situ* Measurement Interferometer. How to install in LIGO-1 interferometer?

Conclusion

- ♦ LIGO-IAP Lab has been equipped with several instruments developed at IAP for High-Precision Characterization of LIGO Optical Components
- **♦ 25** cm aperture white-light phase-modulated interferometer (WLPMI) for preliminary control of LIGO Core Optics has been implemented
- **♦** Version of WLPMI for installation on end station is tested experimentally.
 - **♦ Design of WLPMI for ETM has been done.**