

LIGO Commissioning Update

LIGO Collaboration Meeting, Mar 18, 2003 Peter Fritschel, Daniel Sigg, Nergis Mavalvala

LIGO

Commissioning History

S1 Noise Component Analysis, LLO 4k

"Estimated Noise Limits for S2" (as foretold in October 2002)

Changes Since S1 (highlights)

- Optical lever improvements
 - Structural stiffening (designed for thermal/kinematic stability, not low vibration)
 - Improved filtering to take advantage of reduced resonances
 - Pre-ADC "whitening" for improved dynamic reserve
- Improved DAC "De-Whitening"
 - Match DAC dynamic range to spectrum of correction forces at each frequency
 - Tricky handoff; reciprocal analog & digital filters must switch roles after lock acquisition, without transients
- New coil drivers & realtime control code for suspensions
 - ➤ Lower noise, switchable dynamic range (200 mA acquisition, 5 mA running)
 - Separate DC biases for alignment
 - > Better filtering, diagonalization and control/sequencing features
- MORE POWER
 - Enabled by better alignment stability
 - Also required control of "I-phase" photocurrent (overload)
 - Now ~ 1.5 W into mode cleaners, ~ 40 W at beamsplitter (*R*~40)
 - Only 10-20 mA average DC photocurrent at dark ports !! (optics very good)

5

Stability improvements

- Wavefront sensing alignment control progress
 - > H1: 8 of 10 (14) alignment degrees-of-freedom now under feedback control
 - Greatly improves long term power stability
 - Still need: all DOF; more feedback bandwidth to reduce short term power fluctuations
 - L1: Still 2 DOF under feedback control
 - Bandwidth of this loop increased 10x since S1, reducing short term fluctuations
 - Phase camera implemented: makes a 2-D map of the RF amplitude and phase
 - Proven useful as a manual alignment aid

Optical characterization

- Good news: optics quality is (almost all) good
 - Recycling gain meets or exceeds goals
 - ❖ L1: Gain of nearly 50 seen, more usually about 45
 - ❖ H1: Gain of 40-45
 - Contrast defect meets or exceeds goals
 - L1: $P_{as}/P_{bs} = 3 \times 10^{-5}$
 - H1: $P_{as}/P_{bs} = 6 \times 10^{-4}$
- Bad news: Very low RF sideband gain/efficiency
 - ➤ H1: Sideband power efficiency to AS port: ~6%
 - ➤ L1: similarly low
 - Cause: thermal lensing in the ITMs isn't at the design level
 - Achieving shot noise goal requires that this be fixed
- □ H2: Cause of low recycling gain (20) discovered
 - Bad (no) AR coating on ITMX, must be replaced

Strain Sensitivity for the LLO 4km Interferometer

Tasks at Hand

- Seismic retrofit at LLO
- □ Finish auto-alignment system
- □ RFI cleanup, linear power supplies
- Thermal lensing
- Optical gain increase of LSC photodiodes
- Shot noise sensitivity
- Acoustic coupling
- Others: microseismic peak reduction (LHO), ISS, photon calibrator, ASI servo, WFS 5, replace lossy PMCs, clean MC mirrors, digital IO WFS, tune up PSLs, remote power dial, 2K ITMX replacement, read/process more LSC channels, finish v stabilization servos, duty cycle

Commissioning: SEI Upgrade

- The Seismic Isolation System (SEI) at LLO needs to be upgraded
 - > To mitigate the higher seismic noise environment (logging principally)
 - ➤ Plan is to add an active, external pre-isolation (EPI) stage without disturbing the alignment of the installed optics

Current Plan:

- Continue prototype testing at LASTI, including migrating from dSpace to VME based controls
- ➤ Order components, fabricate and assemble after successful review (planned for ~4/18); fabrication/assembly phase lasts ~5.5 months
- Installation starts ~Oct and should complete ~Jan 2004
- ➤ This frees up the piezoelectric, 2 DOF EPI systems at LLO for possible subsequent installation at LHO to help with high winds

Commissioning: SEI Upgrade

Hydraulic External Pre-Isolator (HEPI)

electro-Magnetic External **Pre-Isolator (MEPI)**

G030068-00-D

LIGO I

Thermal Lensing

RF sideband efficiency is very low

- Efficiency: TEM₀₀ SB power at antisymmetric port, relative to input SB power
- ➤ H1 efficiency: ~6%
- Need a stable PRM: lack of ITM thermal lens makes g₁·g₂ > 1
- Currently see some lensing in H1

Possible solutions

- Change RM (w/ new ROC);6 month lead time
- Add the missing heat to ITMs with another source
- 20-25 W PSL with additional LWE amplifier

ITM Heating

Bad mode overlap

DC (carrier)

RF sidebands

Optical Gain Increase for LSC Photodiodes

- □ Dynamic range problem: 1000x
 - Locking ~100 μA / running ~100 mA
 - > EO shutter range: 200-700
 - > Solutions:
 - ❖ Two EO shutters running in series
 - Separate PDs for locking (low power) and running (high power)
 - Remote dial for laser power

ASI Servo

AS Port

- □ ASI signal dominant!
- Multiple AS port detectors

 \rightarrow H1: $P_{AS} = 500-600 \text{ mW} \Rightarrow 4 \text{ detectors}$

ightharpoonup L1: $P_{AS} = \sim 20-30 \text{ mW} \Rightarrow 1 \text{ detector}$

LIGO I 13

Shot Noise Sensitivity

- □ AS port: project a factor of ~2 shortfall
 - Reasonable SB
 efficiency with thermal
 lensing will get us there
 - ➤ Output mode cleaner for AS would also get factor of ~2, may also be desirable to eliminate scattered/junk light
- □ Pick-off detector

LIGO Acoustic Peaks: Scattering/Clipping

- □ Peaks occur in 80-1000 Hz band, at a level 10-100x the SRD
- □ Source for H1/H2 coincidences(?)
- Should consider:
 - Active ISCT beam direction stabilization
 - Acoustic isolation improvements: ISC tables only, or all LVEA?
 - Modify output periscopes/mirror mounts: stiffer, damped
 - Mount Faraday isolators onto ISC tables
 - Larger in-vacuum Faraday, larger EO shutters
 - > In-vacuum, seismically isolated output bench

Acoustic Excitations

