Naples E.Calloni L.DiFiore M.Varvella

Rome M.Bonafede E.Bompiani E.Majorana P.Puppo P.Rapagnani F.Ricci

Perugia

P.Amico L.Carbone F.Marchesoni L.Gammaitoni M.Punturo H.Vocca

(IO)//VIRGD *SUSPENSIONS*

S.Braccini

Florence-Urbino

E.Cuoco G.Calamai G.Guidi G.Losurdo M.Mazzoni R.Stanga F.Vetrano A.Vicere' **EGO** G.Ballardin A.Gennai G.Gennaro P.Lapenna R.Taddei

<u>Pisa</u>

S.Braccini C.Bradaschia R.Cavalieri G.Cella V.Dattilo A.Di Virgilio F.Fidecaro F.Frasconi A.Gennai G.Gennaro A.Giazotto L.Holloway F.Paoletti R.Passaquieti D.Passuello R.Poggiani

LIGO-G030017-00-D

Attenuation Measurements

Mirror Swing Reduction

Mirror Local Controls

VIRGO GOAL

Ground Seismic Vibrations are very strong below several tens of Hz

VIRGO Suspensions

Ground

Residual seismic mirror vibrations below the thermal noise floor starting from a few Hz

Specification on Horizontal transmission

Seismic Noise

Mirror Thermal Displacement

~ $3 \ 10^{-15} f^{-5/2} m Hz^{-1/2}$

Specification on Vertical transmission

Seismic Noise

 $\sim 10^{-7} f^{-2} m Hz^{-1/2}$

Several orders of magnitude attenuation @ a few Hz

Mirror Thermal Displacement

~ $3 \ 10^{-15} f^{-5/2} m Hz^{-1/2}$

Horizontal Attenuation

mirror

ground

Long Pendula !!!

Chain maximum horizontal frequency around 2 Hz

Vertical Attenuation

mirror

ground

Soft Springs !!!

Blade Springs

Blade Spring Top View

Mechanical Filter

Chain maximum vertical frequency around 2 Hz

Ultra - low frequency oscillator (30 mHz)

$F = K x = M \omega^2 x$

Expected Performances

Expected Residual Seismic Noise

"Seismic Wall"

Beam Splitter

Direct Measurement

Results for Horizontal Transmission

Results for Horizontal Transmission

This is only an upper limit !!!

Measured Horizontal Transmission

Attenuation by Inverted Pendulum

Top Stage Seismic Noise on beam direction

Residual Mirror Seismic Noise

Input Seismic Noise on Top Stage 7 ·10⁻¹¹ m · Hz^{-1/2}

Chain Transmission Upper Limit 6 ·10⁻⁸

Upper Limit of Residual Noise 4 ·10⁻¹⁸ m · Hz^{-1/2}

Mirror displacement induced by horizontal seismic noise

Residual Seismic Noise Upper Limit @ 4.1 Hz 4 ·10⁻¹⁸ m · Hz^{-1/2}

Thermal Noise @ *4.1 Hz* 9 ·10⁻¹⁷ m · Hz^{-1/2}

Measured Vertical Transmission

Measured Vertical Transmission

Top Stage Seismic Noise

 $2 \cdot 10^{-9} m \cdot Hz^{-1/2}$

Mirror displacement induced by vertical seismic noise

Residual Seismic Noise Upper Limit @ 4.1 Hz 2 ·10⁻¹⁷ m · Hz^{-1/2}

Thermal Noise @ *4.1 Hz* 9 ·10⁻¹⁷ m · Hz^{-1/2}

Passive attenuation is enough but

Chain resonant frequencies (0.1 Hz < f < 2 Hz) induce tens of microns mirror swings

Mirror swing reduction

1 – Help locking acquisition

Mirror swing reduction

2 - Allow noiseless control of the interferometer

Mirror

Maximum compensation "close to the mirror" is about one micron

rms mirror velocity smaller than a few tenths of micron per second

rms mirror displacement smaller than one micron (on a time scale of 10 s)

Inertial Damping

Inertial Damping Stability

N consecutive measurements of rms velocity

Distribution of 10 s velocity rms

Top-stage RMS

 $x_{rms}(f) = \sqrt{\int_{f} \tilde{x}^{2}(\nu) d\nu}$

IP Contribute

Actual Contribution to velocity rms is 0.37 μm/s

Cure

Better crossing LVDT-Accelerometers in Inertial Damping Loop or Top Stage Control

Pendulum Contribute

Actual Contribution to velocity rms is 0.26 µm/s

Cure

Damping from ground based actuators

0.45 Hz Contribute

Actual Contribution to velocity rms is 0.13 µm/s

Cure Inertial Damping from Top

 $x_{rms}(f) = \sqrt{\int_{f} \tilde{x}^{2}(\nu) d\nu}$

Is the mirror slow ?

Is the mirror slow ?

Is the mirror slow ?

Mirror Displacement

$\begin{array}{l} \textbf{Rms displacement is a} \\ \textbf{few tenths of } \mu \textbf{m} @ 100 \ \textbf{mHz} \end{array}$

Mirror Swing Specifications

rms mirror velocity smaller than a few tenths of microns per second

rms mirror displacement smaller than one micron on time scales larger than 10 s

Digital Camera reads the mirror position in all degrees of freedom

Mirror Angular Control Specifications

To reduce angular swings from a few tens of microradians down to one microradian

Angular displacements

θx

Ĥ

CONCLUSIONS

Vertical and horizontal seismic vibrations induce mirror displacements smaller than thermal noise even around 4 Hz

The mirror swing amplitude has been decreased within the specifications

Camera control reduces the angular swings of the mirror down to less than one microradian