

Tasks After S2

Commissioning Meeting, Feb 3., 2003 Peter Fritschel, Daniel Sigg

"Left Over"

- Seismic retrofit at LLO
- Microseismic peak reduction (LHO)
- □ DAC (ADC) replacement
- □ ISS
- Photon calibrator
- □ RFI cleanup, linear power supply
- Laser v stabilization: FSS/MC/CM (good enough?)
- Operate at full 6W, multiple AS PDs
- ASI servo, REFLQ servo?
- WFS

2

New problems to solve

Thermal lensing

- Present RF sideband efficiency is very low
 - ➤ Efficiency: TEM₀₀ SB power at anti-symmetric port, relative to input SB power
 - ➤ H1 efficiency: ~6%
 - ➤ Need a stable PRM: lack of ITM thermal lens makes $g_1 \cdot g_2 > 1$
 - Currently see some lensing in H1; analysis in progress
- Possible solutions
 - Change RM (w/ new ROC); 6 month lead time
 - Add the missing heat to ITMs with another source
 - 20-25 W PSL with additional LWE amplifier (a la Stanford)

New problems to solve

Optical gain (light) increase for LSC PDs

- Dynamic range problem
 - ➤ Lock acquisition photocurrent: ~100 microamp vs detection photocurrent of ~100 milliamp: 1000x range
 - ❖ And optical gain will increase with PRM stability, reducing acq. current
 - ➤ EO shutter range: 200-700
 - > Solutions:
 - Two EO shutters running in series
 - Separate PDs for locking (low power) and running (high power)
- AS port power extrapolation
 - $Arr P_{AS} \sim 200W \cdot (1-C)/2 \cdot (4-5)$
 - ightharpoonup H1: P_{AS} = 500-600 mW ightharpoonup detectors
 - \triangleright L1: P_{AS} = 20-30 mW \rightleftharpoons detector

New problems to solve

Shot noise sensitivity

- AS port: project a factor of ~2 shortfall
 - Reasonable SB efficiency with thermal lensing will get us there
 - ➤ Output mode cleaner for AS would also get factor of ~2, may also be desirable to eliminate scattered/junk light
- □ Pick-off detector (MICH & PRC sensing)
 - > POB beam is weak, poor shot noise sensitivity
 - Will improve with PRM stability
 - Could install PO PD at POX/POY (more light)
 - Use reflection port?
 - ➤ Things to investigate: what determines the PRC → AS_Q coupling? How much bandwidth is needed in the PRC loop?

New problems & tasks

Acoustic peaks: Scattering/Clipping

- □ Peaks occur in 80-1000 Hz band, at a level 10-100x the SRD
 - Clearly beam centering & focusing on the diodes is important
 - Not yet clear what role scattered light plays
 - > A proper SB mode will most likely help
- Actions to take:
 - > revise beam line and dump ALL ghost beams on dedicated dumps
 - mount cameras to image beam on photodetectors; add pico-motors for remote centering
- □ Should consider:
 - Active ISCT beam direction stabilization: beam direction shifts due to high power already seen
 - Acoustic isolation improvements: ISC tables only, or all LVEA?
 - Modify output periscopes: stiffer, damped
 - Mount Faraday isolators onto ISC tables
 - Larger in-vacuum Faraday, larger EO shutters

New tasks

- □ Read & process more LSC ADC channels
 - Rolf looking into hardware/software improvements
- Getting higher input power
 - Replace lossy PMCs
 - > Tune up or replace PSLs
 - Check for lossy MCs; clean mirrors?
 - Need a good place to park the misaligned RM beam
- □ Locking with higher power
 - Not easy on H1, even with only 2.7 W into MC
- □ ASC
 - WFS 5 for one arm alignment
 - Automatic initial alignment procedure
 - digital IOO WFS servo
- □ 2K recycling loss problem
 - > replace ITMX