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CONTEXT AND OVERVIEW
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OBJECTIVE:

Reduce Thermoelastic Noise :
in LIGO-II, to Take Advantage .
of the Low Optical Noise
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KEY POINTS ABOUT THERMOELASTIC NOISE

Physical Nature

— On timescale ~0.01 secs, random heat flow
=> hot and cold bumps of mean size ~0.5 mm

— Hot bumps expand; cold contract
— Light averages over bumps
— Imperfect averaging => Thermoelastic noise

Computed via fluctuation-dissipation theorem

— Dissipation mechanism: heat flow down a temperature gradient
=> Computation highly reliable (by contrast with conventional
thermal noise!)

— This reliability gives us confidence in our proposal for reducing
thermoelastic noise
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Strategies to Reduce Thermoelastic Noise

- (Gaussian beam averages over
bumps much less effectively
than a flat-topped beam.

- The larger the beam, the better the averaging.
— Size constrained by diffraction losses

—

10ppm x 4 x 830kW = 33W
= 25% X input power

Flattened Mirrors:
Eigenmodes have

‘ /) Flat Topped Sha@

10,000ppm x 2 x 1.05kW = 21W
= 17% X input power

Input beam:
Flat Topped
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OUR FLATTENED MIRRORS & BEAMS

Compute desired beam shape:

— Superposition of minimal-spreading Gaussians -- axes
uniformly distributed inside a circle of radius D

— Choose D so diffraction losses
are 10 ppm

- Compute shape of mirror
to match phase fronts:
Mexican-Hat (MH) Shape
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Computing noise: Fluctuation dissipation theorem

@ Thought experiment:
Static pressure on mirror face

Shape is beam intensity profile, normalization F,
—

( kTaE Y1 ] =
h_4((l—2v)CVp] a)zl F

)

— [aAvef

@ 7 contains information about beam, mirror shape and size

@ Find / via standard elasticity code (finite-element)

Independently computed by O’Shaughnessy, Strigin, Vyatchanin
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LIGO Network’s NS/NS Range

Computed by Buonanno & Chen (private communication)

Includes only thermoelastic noise and optical (unified
guantum) noise --- assumes all others can be made negligible

Optical parameters (SR mirror, homodyne phase) optimized
for NS/NS range at each level of thermoelastic noise
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Q Different ITM & ETM Cones
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Practical Issues: Parasitic Modes & Tilt

Compare two configurations:
— Baseline Gaussian-Mode Interferometer

« Mirror radius R= 15.7 cm

« Gaussian beam radius ro = 4.23 cm

- Diffraction losses (per bounce in arms) LO = 1.9 ppm
— Fiducial MH (Mexican-Hat) Interferometer

* Mirrorradius R =16 cm

 MH beam radius D =10.4 cm

- Diffraction losses (per bounce in arms) LO = 18 ppm
— [Conservative comparison]

Two sets of analysis tools:

— Arm-cavity integral eigenequation [-> orthornormal modes]
- + 1st & 2nd order perturbation theory [-> mode mixing]
- O’Shaugnessy

— FFT simulation code [adapted from LIGO E-2-E model]
- D’Ambrosio
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Propagation and Eigenequation

Same tools as used with spherical mirrors: -
- Propagation Operators (=unitary!) ,l) T *
— Free propagator : If cavity length L, ¥
k (r=r'Y GGuw)
G,(r,r')=-i——expi + kL
L) = Pk
— Reflection off mirror: If mirror heights are h(r)
G, (r, r')= o(r-r') eXp|_— 2ikh, , (r )j G,G,G,|v)
- Eigenequation v) v

— Beam returns after one round trip with -
similar shape if C‘l])> = GIGLG2GL‘1/}>
— Eigensolutions §,.y,)} complete and orthonormal, with || =1
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Eigenproblem Method

Numerical Method

— Discretize the integral operators {G,,G, ,} on finite circle
[0, Ria]
— Multiply matricies to form discrete round-trip operator
G =G 1G GG,
— Diagonalize round-trip operator G
- Output
— Discrete representation of £,.|y,)}, appropriate to finite mirror
of radius R . If mirror large, ~ infinite-mirror wavefunction
— Losses:
+ Exact roundtrip losses: L, =1-[¢|

« Clipping losses: )
— Mirror 1: L, =1- ﬂ(p\ dA

r<R,

net

— Mirror 2:if W =G,y ,then L,=1- f‘P‘sz

r<R,



Eigenproblem Perturbation Theory

Perturbation theory
Conventional perturbation theory expansion: if G,’=G,+0G,

k|G.G,8G,G, |y
p)+ 3, oy EGGGGNY,)
G, -G,

elc

+0(8G,%)

v)=

Both state and phase vary smoothly with perturbation parameter



 Baseline Gaussian: Aw = w-wg,,4 = (Integer) X

Parasitic-Mode Frequencies

X 1te/L

* Fiducial MH: [from cavity eigenequation, solved numerically/

Radial Nodes

Azimuthal Nodes
ac/ L C
0 0.0404 0.1068 0.1943
Q 0.1614 0.2816 0.4077 -0.4581
@ 0.4303 -0.4140 -0.2570 (X) -0.0812 (X)
-0.2330 (X) -0.0488 (X) 0.1406 (X) (X)

X = indicates diffraction losses per bounce > 1%



Tilt-induced Mode Mixing

 Tilt arm-cavity ETM through an angle 6
« Mode mixing'
—UO (1 (11 U0+(X1U1+2UZ
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The Admixed Parasitic Modes

From Eigeneqn + Pert’'n Theory  * From FFT Simulations
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Tilt-induced Mode Mixing

- Tilt arm-cavity ETM through an angle 6
— Bg =06/ 08 rad

* Mode mixing:
— U = (1-(112)u0 + a4 Uy + 05 Uy

Fiducial MH Cavity
From Eigenegn + Pert’n Theory From FFT Simulations

aq = 0.02272 6g <Few/ 1000> aq = 0.0227 6g

ap = 0.00016 6g2 < ~10% > ap = 0.00018 6g2

MH Cavity has same 04

Baseline Gaussian-Beam Cavity
+ a4y =0.00469 6g as Baseline Gaussian if tilt

is controlled 5 times better




Influence of Tilt on Cavity Performance

- Arm-Cavity Diffraction Losses

— Eigeneqgn + Pert’n Theory: L'y =(18. +0.043 682 ) ppm

— So small it has not been measured reliably in FFT simulations
- Arm-Cavity Gain

— Eigeneqn + Pert’n Theory: 737 (1 - 0.00055 652 )

— FFT Simulations: 740 (1 - 0.00059 652 )

5/1000 10 per cent




Influence of Tilt on Interferometer’s
Dark-Port Output Power

Fraction of input power in dark-port dipolar parasitic mode u
— Eigeneqgn + Pert’n Theory: P1 =478 682 ppm ’

— FFT Simulations: P1 =482 65~ ppm

Fraction of input power in fundamental mode ug, and second-

order parasitic mode (monopolar + quadrupolar) u,

— Eigeneqgn + Pert'n Theory: PO =0.256 684 ppm
- P2 = 0.024 685 ppm

- (PO + P2) = 0.28 6g* ppm
— FFT Simulations: (PO + P2) = 0.31 684 ppm
Baseline Gaussian: P1 =22 682 ppm;

~ PO = 0.00048 8g* ppm
MH is same as Gaussian if tilt is controlled 5 times better



SOME OTHER ISSUES THAT NEED STUDY

- Theoretical Modeling issues:
— Tolerances on mirror shapes
 Absolute tolerances

 Tolerances in relative
differences between mirrors

« Thermal lensing and its compensation

<04
£0.3
T 0.2
L

0.1

— Possible dynamical instabilities

0 25 5 7.5 10 12.5 15
radius,cm

* e.g., rocking motion due to positive rigidity
combined with time delay in response

- Laboratory prototyping



