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CONTEXT AND OVERVIEW
Sapphire Mirrors

Thermoelastic Noise

OBJECTIVE:
Reduce Thermoelastic Noise

in LIGO-II, to Take Advantage
of the Low Optical Noise
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KEY POINTS ABOUT THERMOELASTIC NOISE

• Physical Nature
– On timescale ~0.01 secs, random heat flow

=> hot and cold bumps of mean size  ~0.5 mm
– Hot bumps expand; cold contract
– Light averages over bumps
– Imperfect averaging => Thermoelastic noise

• Computed via fluctuation-dissipation theorem
– Dissipation mechanism:  heat flow down a temperature gradient

=> Computation highly reliable (by contrast with conventional
thermal noise!)

– This reliability gives us confidence in our proposal for reducing
thermoelastic noise

Light Beam
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Strategies to Reduce Thermoelastic Noise

• The larger the beam, the better the averaging.
– Size constrained by diffraction losses

• Gaussian beam  averages over
bumps much less effectively
than a flat-topped beam.

Flattened Mirrors:
Eigenmodes have 
Flat Topped Shape

Input beam:
Flat Topped

10,000ppm x 2 x 1.05kW = 21W 
= 17% x input power

10ppm x 4 x 830kW = 33W 
= 25% x input power
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OUR FLATTENED MIRRORS & BEAMS
• Compute desired beam shape:

– Superposition of minimal-spreading Gaussians -- axes
uniformly distributed inside a circle of radius D

– Choose D so diffraction losses
are 10 ppm D

• Compute shape of mirror
to match phase fronts:
Mexican-Hat (MH) Shape

Spherical,
Rcurv = 78 km

Mexican Hat
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Independently computed by O’Shaughnessy, Strigin, Vyatchanin

∫

Light Beam
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LIGO Network’s NS/NS Range
• Computed by Buonanno & Chen (private communication)
• Includes only thermoelastic noise and optical (unified

quantum) noise --- assumes all others can be made negligible
• Optical parameters (SR mirror, homodyne phase) optimized

for NS/NS range at each level of thermoelastic noise
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Summary of
Thermoelastic

Predictions

Cylindrical 
Test Masses
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Summary of
Thermoelastic

Predictions

Identical Conical
 Test Masses
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Summary of
Thermoelastic

Predictions
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Practical Issues: Parasitic Modes & Tilt
• Compare two configurations:

– Baseline Gaussian-Mode Interferometer
• Mirror radius R= 15.7 cm
• Gaussian beam radius ro = 4.23 cm
• Diffraction losses (per bounce in arms) L0 = 1.9 ppm

– Fiducial MH (Mexican-Hat) Interferometer
• Mirror radius R = 16 cm
• MH beam radius D = 10.4 cm
• Diffraction losses (per bounce in arms) L0 = 18 ppm

– [Conservative comparison]

• Two sets of analysis tools:
– Arm-cavity integral eigenequation  [-> orthornormal modes]

•  + 1st & 2nd order perturbation theory [-> mode mixing]
• O’Shaugnessy

– FFT simulation code [adapted from LIGO E-2-E model]
• D’Ambrosio
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Same tools as used with spherical mirrors:
• Propagation Operators (=unitary!)

– Free propagator : If cavity length L,

– Reflection off mirror: If mirror heights are h(r)

• Eigenequation
– Beam returns after one round trip with
similar shape if
– Eigensolutions              complete and orthonormal, with

Propagation and Eigenequation
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Eigenproblem Method
• Numerical Method

– Discretize the integral operators {GL,G1,2}  on finite circle
[0,Rmax]

– Multiply matricies to form discrete round-trip operator
Gnet=G1GLG2GL

– Diagonalize round-trip operator Gnet
• Output

– Discrete representation of             , appropriate to finite mirror
of radius Rmax.  If mirror large, ~ infinite-mirror wavefunction

– Losses:
• Exact roundtrip losses:
• Clipping losses:

– Mirror 1:

– Mirror 2: if                  , then
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Eigenproblem Perturbation Theory

• Perturbation theory
Conventional perturbation theory expansion: if G2’=G2+dG2

etc

Both state and phase vary smoothly with perturbation parameter
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Azimuthal Nodes
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Parasitic-Mode Frequencies
• Baseline Gaussian:   Dw = w-wfund = (integer) x 0.0614 x pc/L

• Fiducial MH: [from cavity eigenequation, solved numerically]

FSR
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|u0|2

Tilt-Induced Mode Mixing
• Tilt arm-cavity ETM through an angle q
• Mode mixing:

– u’0 = (1-a1
2)u0 + a1 u1 + a2 u2

~ q2~ q~ q2
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The Admixed Parasitic Modes
• From Eigeneqn + Pert’n Theory • From FFT Simulations
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Tilt-Induced Mode Mixing
• Tilt arm-cavity ETM through an angle q

–   q8 = q/10-8 rad
• Mode mixing:

– u’0 = (1-a1
2)u0 + a1 u1 + a2 u2

• From Eigeneqn + Pert’n Theory

•  a1 = 0.02272 q8

•  a2 = 0.00016 q8
2

• From FFT Simulations

•  a1 = 0.0227 q8

•  a2 = 0.00018 q8
2

Few/1000

~10%

Fiducial MH Cavity

•  a1 = 0.00469 q8

Baseline Gaussian-Beam Cavity MH Cavity has same a1 

as Baseline Gaussian if tilt

  is controlled 5 times better
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Influence of Tilt on Cavity Performance

• Arm-Cavity Diffraction Losses
– Eigeneqn + Pert’n Theory:   L’0 = (18. + 0.043 q8

2 ) ppm

– So small it has not been measured reliably in FFT simulations

• Arm-Cavity Gain
– Eigeneqn + Pert’n Theory:  737 (1 - 0.00055 q8

2 )

– FFT Simulations:                 740 (1 - 0.00059 q8
2 )

5/1000 10 per cent
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Influence of Tilt on Interferometer’s
Dark-Port Output Power

• Fraction of input power in dark-port dipolar parasitic mode u1
– Eigeneqn + Pert’n Theory:  P1 = 478 q8

2 ppm
– FFT Simulations:                  P1 = 482 q8

2 ppm
• Fraction of input power in fundamental mode u0, and second-

order parasitic mode (monopolar + quadrupolar) u2
– Eigeneqn + Pert’n Theory:  P0 = 0.256 q8

4 ppm
–                                              P2 = 0.024 q8

4 ppm
–                                   (P0 + P2) = 0.28 q8

4 ppm
– FFT Simulations:       (P0 + P2) = 0.31 q8

4 ppm

• Baseline Gaussian:  P1 = 22 q8
2 ppm;

–                                  P0 = 0.00048 q8
4 ppm

• MH is same as Gaussian if tilt is controlled 5 times better.

1 %

10 %
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SOME OTHER ISSUES THAT NEED STUDY

• Theoretical Modeling issues:
– Tolerances on mirror shapes

• Absolute tolerances
• Tolerances in relative

differences between mirrors
• Thermal lensing and its compensation

– Possible dynamical instabilities
• e.g., rocking motion due to positive rigidity

combined with time delay in response

• Laboratory prototyping


