Advanced LIGO Suspension Research

Dan Mason John Veitch

Mentors: Dr. Calum Torrie Janeen Romie

Upper Mass Bending Model

- Ends of upper mass bend up when blades are loaded
- Bending of upper masses changes spacing between stages and overall length of pendulum
- As a temporary solution,
 stiffening bars were added to stop bending
- Next generation prototype will be designed so that upper plate alone will not deflect >1 mm

The Quadruple Pendulum

Upper Mass Bending Model

- Ends of upper mass bend up when blades are loaded
- Bending of upper masses changes spacing between stages and overall length of pendulum
- As a temporary solution,
 stiffening bars were added to stop bending
- Next generation prototype will be designed so that upper plate alone will not deflect >1 mm

Bending Model Derivation #1

Two methods:

- 1. Force Method
- 2. Force and Moment Method (Phil Willems)

Force Method Model

 Force and moment balance gets values for forces F and R

 Transferring to upper mass results in a simple cantilever beam with two transverse forces

Force Method Model

- Superimposing deflections of Forces F and R obtains the formula below
- The first term (with F) refers to bending up, the second term refers to bending down

$$\int = \frac{F(L-\frac{a}{2})^{2}}{6EI} (\partial L - \frac{a}{2}) - \frac{R(L-a)^{2}}{6EI} (\partial L + a)$$

where $F = \frac{W(\partial L-a)}{a} - W$

 $R = \frac{W(\partial L-a)}{a}$

 $E = Modulus of Elasticity$

 $I = \frac{1}{12}bh^{3}$

Force / Moment Model

 Force/Moment model approximates the two forces as a couple and their resultant as a transverse force

•Once again, equation is a difference of two deflections

wer QEI

Model Testing

Model was tested by fastening a thin piece of aluminum to the end of a table and loading the blade.

Model Testing

	Deflection Calculator				
Input	5				
а	width of clamps	0.02			
ь	width of upper mass	0.038			
1	length of upper mass	0.597			
h	thickness of uppermass	0.00634			
с	length of blade	0.26			
	width of blade	0.025			
	thickness of blade	0.0023			
d	mass overhang	0			
m	mass applied	7.88			
Calculations					
w	Force Applied	77.3028			
R	Reaction Force (Down Push)	-1932.57			
F	Reaction (Push Up)	1855.2672			
I	Moment of Inertia	8.07E-10			
F	Modulus of Elasticity	6.90E+10			

Models

LIGO

 Deflection Down
 -2222.400

 Deflection Up
 2188.962

 Overall deflection (Eq. 1)
 -33.44

 Force/Moment Model

 Force
 -98.464

 Moment
 64.323

 Overall Deflection (Eq. 2)
 -34.14

 Average:
 -33.79

Force Model

- Experimental deflection numbers obtained by testing ten aluminum bars of different dimensions
- Calculated deflections obtained by entering parameters into Excel worksheet
- Both Force and Force/Moment methods are calculated and average of two used for comparison.

Results!

• Aluminum Bars

» Differences between experimental and calculated deflections < 10% for all bars</p>

MIT Quad

- » Measured deflection: ~12 mm
- » Calculated deflection: 9.6 mm

• Future Prototypes

- » Designs for next-generation aluminum upper masses should be designed with a thickness between **18 mm** (lightest configuration) and **21 mm** (heaviest).
- » For stainless steel upper mass, between **13 mm** and **16 mm**
- » Numbers are for deflections of < 1 mm

Cold-Welding Experiment

- Cold-welding (galling) is the fusing of a moving part through excessive pressure, temperature, or friction
- Relevent to LIGO because it happens very frequently under very clean conditions (absence of lubricants)
- To be studied because of differing suggestions among machine shops as to size and threading of holes

The Procedure

• Variables to be measured:

- » 2 sizes of fasteners (4-40 and 1/4 –20 screws)
- » 2 types of fasteners: silver plated and stainless steel
- » 2 materials for base: stainless steel and aluminum
- » 3 types of holes: UNC-2B, UNC-1B, Oversize taps

• All Parts cleaned and baked to LIGO specifications

- » Ultrasonic clean in Liquinox
- » Rinse in distilled water
- » Ultrasonic clean in methanol
- » Baked in vacuum

The Holes

• Plates manufactured with 12 each three sizes of holes

•Threaded Holes Primer: UNC-2B and UNC-1B are conventional sizes, oversize holes were custom-made

	Tap Drill Size	Range
4-40 UNC-2B	0.0938	.09580991
4-40 UNC-1B	0.0960	.09581012
4-40 .003 Oversize	0.0980	.09881042
1/4-20 UNC-2B	0.2055	.21752224
1/4-20 UNC-1B	0.2090	.21752248
1/4-20 .005 Oversize	0.2130	.22252298

- Each bolt torqued to a given value, unscrewed by hand, and rated
 - Rating system:
 - » 1: Very easy to unscrew
 - » 2: A little friction
 - » 3: Struggling
 - » 4: Frozen
- 4-40's torqued at 5, 8, 12, 16, 20 in lbs (recommended: 5)
- ¹/₄-20's torqued at 12, 20, 40, 60, 80 in lbs (recommended: 65)

Results!

• High occurrence of freezing:

- » Stainless screws in stainless plates (2B, 1B)
- » Silver-plated screws in aluminum plates (2B, 1B)

No galling:

- » Stainless screws in aluminum plates
- » Silver-plated screws in stainless plates
- » All oversize holes
- Recommendation:
 - » Use stainless in aluminum
 - » Silver-plated in stainless
 - » Oversize holes (though 1B is an improvement over 2B)

Acknowledgements

Many thanks to my mentors Calum Torrie Janeen Romie Phil Willems

