

Institute of Applied Physics of the Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

### Remote in situ monitoring of weak distortions

Ilya Kozhevatov, Efim Khazanov, Anatoly Poteomkin, Anatoly Mal'shakov, Nikolay Andreev, Andrey Shaykin, Alexander Sergeev

#### **Current Research**

- ♦ Remote *in situ* monitoring of weak distortions emerging under auxiliary laser heating similarly to what is expected in advanced LIGO core optics
- **♦** Proposal for remote *in situ* monitoring of weak distortions of ETM.

### Remote in situ monitoring of weak distortions emerging under auxiliary laser heating



- 1 WLPMI
- 2 NHS and PIT
- Optical sample bulk heating by the fundamental or second harmonic of Nd:YAG laser at a power of 10-20 W
- Surface heating with the use of a CO<sub>2</sub> laser at power of several Watts
- Inducing contamination of a small region (characteristic size of 20-100 micron) on the optical element's surface and focusing of low-power laser radiation (<100 mW) on it

#### Scanning Linear HartmannTechnique



### Optical depth profile measured with scanning linear Hartmann sensor for two heating beam:

7mm Airy and 1 mm pencil structures



# White Light *In Situ* Measurement Interferometer (WLISMI)

| Standard interferometers                                                                                    | Proposed interferometers                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measurement of optical length of air spacing between two surfaces.                                          | The proposed method relies on measurements of the phase of interferogram of radiation reflected <b>from two surfaces of one sample</b> under study.      |
| In profilometers one of them is<br>a sample surface, and the other<br>is a reference surface.               | The precise phase measurements are ensured by the <b>modulation</b> of the probing radiation <b>spectrum</b> .                                           |
| The problem of precise measurement of phase in the interferogram is solved by phase modulation according to | The method provides a two-dimensional pattern of a sample's <b>optical thickness distribution</b> simultaneously over the whole aperture.                |
| a known time law.                                                                                           | The method is applicable to <b>remote testing</b> of optical elements with flat, spherical and cylindrical surfaces, and also with a wedge between them. |

### White Light *In Situ* Measurement Interferometer. Experimental setup



- 1 light source;
- 2 objective;
- 3 sample;
- 4 ocular;
- 5 measurement interferometer;
- 6 unit for synchronization and control;
- 7 CCD camera;
- 8 PC computer;
- 9 modulating mirror;
- 10 adjusting mirror;
- 11, 13 motors;
- 12 wave front shaper

# White Light *In Situ* Measurement Interferometer Phase Map

Diameter 40 mm Thickness 10 mm





### Phase map of optical sample heated by CO<sub>2</sub> laser



Thickness - 15 mm Diameter - 85 mm

# Simultaneous measurements of optical depth profiles under heating using two different techniques

CO<sub>2</sub> laser - 120 mW Beam size - 7 mm



### White Light *In Situ* Measurement Interferometer. How to install in LIGO interferometer?



### White Light *In Situ* Measurement Interferometer. How to install in LIGO interferometer?



### Experimental results. No heating.



### Experimental results. Heated by CO<sub>2</sub> laser.



#### **Conclusion**

- ♦ LIGO-IAP Lab has been equipped with several instruments developed at IAP for High-Precision Characterization of LIGO Optical Components
- **♦ 25** cm aperture white-light phase-modulated interferometer (WLPMI) for preliminary control of LIGO Core Optics has been implemented
- ♦ Simultaneous measurements of optical depth profiles under heating using two different techniques have been performed
- **♦** Version of WLPMI for installation on end station is tested experimentally.