# Extended Hierarchical Search for Inspiraling Compact Binaries

A. Sengupta, S. Dhurandhar, A. Lazzarini, T. Prince\*, P. Shawhan

Plan of the Talk

- The 1-step search with 2PN templates
- The 2-step search with hierarchy only in the masses
- The 2-step search with hierarchy in masses and decimation in time
  - \* Participated in the early phases of the project

#### The restricted PN waveform in the SPA

$$ilde{h}(f) = \mathcal{N}f^{-7/6} \exp i\psi(f;\lambda^{lpha}) + 2\pi i t_c f + i\phi_0$$
 $\psi(f;\lambda^{lpha}) = \Sigma \, heta^i(\lambda^{lpha})\zeta_i(f)$ 

2PN and spinless templates:  $\zeta_1(f) = f^{-5/3}, \zeta_2(f) = f^{-1}, \zeta_3(f) = f^{-2/3}, \zeta_4(f) = f^{-1/3}$ 

$$\theta_{1} = \frac{3}{128\eta} (\pi M)^{-5/3}$$

$$\theta_{2} = \frac{1}{384\eta} \left( \frac{3715}{84} + 55\eta \right) (\pi M)^{-1}$$

$$\theta_{3} = -\frac{3\pi}{8\eta} (\pi M)^{-2/3}$$

$$\theta_{4} = \frac{3}{128\eta} \left( \frac{15293365}{508032} + \frac{27145}{504} \eta + \frac{3085}{72} \eta^{2} \right)$$

#### The detection strategy

#### Maximum Likelihood Approach:

Parameters: Amplitude,  $t_c$ ,  $\phi_0$ ,  $\tau_0$ ,  $\tau_3$ 

#### Strategy:

- Use normalised templates
- Two templates for  $\phi_0 = 0, \pi/2$  and add in quadrature
- ullet Use FFT for scanning over  $t_c$
- For  $\tau_0, \tau_3$  template bank required

#### The Parameter Space:

Parameters in which the ambiguity function is almost independent of location

$$\tau_0 = \frac{5}{256\mu M^{2/3}} (\pi f_a)^{-8/3}$$
$$\tau_3 = \frac{1}{8\mu} \left(\frac{M}{\pi^2 f_a^5}\right)^{1/3}$$

$$f_a = 40 \text{ Hz}.$$

Mass Range:  $1 M_{\odot} \leq m_1, m_2 \leq 30 M_{\odot}$ 

Area:  $8.5 \sec^2$ 

# Parameter Space



#### Mismatch and Ambiguity Function

$$H(\lambda^{\alpha}, \Delta \lambda^{\alpha}) = \langle s(\lambda^{\alpha}), s(\lambda + \Delta \lambda^{\alpha}) \rangle$$

Intrinsic Ambiguity Function:

$$\mathcal{H}(\tau_0, \tau_3; \Delta \tau_0, \Delta \tau_3) = \max_{\Delta t_c, \Delta \phi_0} H(\lambda^{\alpha}, \Delta \lambda^{\alpha})$$

Minimal match = 0.97

$$n_t \sim 10^4$$

Online speed for the 1-step search (square lattice):  $\sim 3$  GFlop

#### The hierarchical search

#### The principle:

- Two thresholds and two banks of templates:
  - Lower threshold:  $\eta_1$  and a coarse grid of templates
  - Higher threshold:  $\eta_2 = \eta$  and the 1-step fine grid of templates
- $\eta_1$  sufficiently large few false alarms minimise cost of the fine search.
- $\eta_1$  small enough coarse grid minimise cost in the trigger stage.

#### The Total Computational Cost

$$C_1 \sim n_t^{(1)} \times 6N \log_2 N$$

$$C_2 \sim n_c \times (n_t^{(2)}/n_t^{(1)}) \times 6N \log_2 N \times \alpha$$

 $\alpha$  is a covering factor which we will take to be little over 2.

Total cost 
$$C = C_1 + C_2$$
.

Only hierarchy in masses: gain factor 25-30

#### The extended hierarchical search

Include decimation in time in the previous hierarchical search

### Cumulative Signal Power:

92% power at

 $f_c = 256 \text{ Hz}$ 

Factor of 4

In FFT cost



# Comparison of contours (H = 0.8) with 256 Hz and 1024 Hz cut-off



## Chirp cut at 256 Hz

Contour level =  $(\eta_1 + \Delta S)/(.92 \times S_{min}) \sim 0.8$ 



Relative size of boat/ellipse: .97 at 1 kHz and .8 at 256 Hz



## **Boundary Effects**

Inefficient tiling near the low mass end!!

For low mass cut-off of  $1M_{\odot}$ : Need 535 templates







#### **Computational Cost**

Search parameter range  $1 M_{\odot} < m_1, m_2 < 30 M_{\odot},$  Area of interest  $8.5 \sec^2$  Number of templates (first stage)  $\sim 535$  Computational speed (first stage)  $\sim 33$  MFlops Computational speed (second stage)  $\sim 10$  MFlops Computational speed (total)  $\sim 43$  MFlops

Flat search speed: 3 GFlops

 $Gain \sim 70$ 

## **SUMMARY**

- Results shown for Gaussian noise
- Need to look at real (E7, S1) data
- Performance with non-Gaussian noise is the next question
- event multiplicity needs to be condensed into a single event
- Reducing computational cost with hierarchical approach frees up CPU power for additional parameters
- spins



#### **Extended Hierarchical Search for Inspiraling Compact Binaries**

A. Sengupta, S. Dhurandhar, A. Lazzarini

Plan of the Talk

- The 1-step search with PN2 templates
- The 2-step search with hierarchy only in masses with PN2 templates
- The 2 step search with hierarchy in the masses and decimation in time



#### Detection probability $Q_d$

Defn: Signal Strength S=c for perfect match of the parameters

c follows a Rician distribution

 $\sim$  Gaussian with mean S, if S >> 1

With two adjacent templates:

For 
$$Q_d = .95$$
 we get  $S_{minmin} \sim \eta + 0.7$ 

$$S_{min} \sim 8.2 + 0.7 + 3\% \sim 9.2$$

#### Thresholding

#### In absence of the signal:

Each  $c_0, c_{\pi/2}$  is Gaussian distributed with mean zero.

While  $c = \sqrt{c_0^2 + c_{\pi/2}^2}$  is Raleigh distributed:

$$R(c) = c \exp(-c^2/2)$$

1 false alarm/yr, sample at 2 kHz,  $n_t \sim 10^4$  at 3% mismatch

Range  $1M_{\odot} \leq m_1, m_2 \leq 30M_{\odot}$  - LIGO I curve.

$$\int_{\eta}^{\infty} R(c)dc = P_F \text{ gives } \eta \sim 8.2$$



The average number of crossings:  $n_c = n_t^{(1)} \times F_0(\eta)$ 

#### Decimation in time

Use the fact that there is a lot of power at low frequencies in the chirp

At 256 Hz there is 92 % of the signal power

Sample at lower frequencies but lose little in power

Gain in reducing FFT operations in the trigger stage



The average number of crossings:  $n_c = n_t^{(1)} \times F_0(\eta)$