

Vetoes used in the Burst and Inspiral Analyses Part 1

Stefan Ballmer Laura Cadonati Erik Katsavounidis Peter Shawhan LIGO Lab

Vetoes Investigators

Saulson, Zweizig, Christensen, Schofield, Shawhan, Ito, Sigg, Rahkola, Cadonati, Ballmer, Gonzalez, Sylvestre, Shoemaker, Weinstein, Vijay, Klimenko, Katsavounidis, Camp (ca. March 2002)

- Identify software needs for doing the vetoes investigations
- Set the goals for the veto effort
- Deliver the vetoes for the E7 analysis

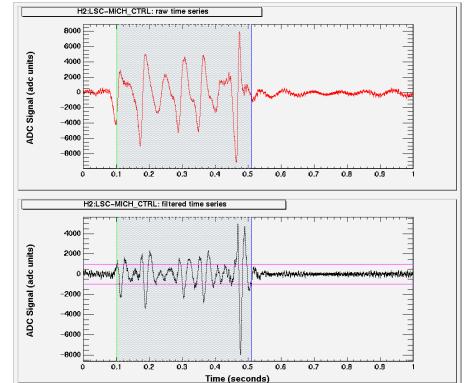
Overview

- Burst and Inspiral DSOs during E7 data taking were generating GW triggers at rates [O(1Hz)]
- DSO-based criteria alone could further eliminate triggers, but still not enough
- E7 data taking was 'bursty'
- Goals for a veto strategy
 - Define auxiliary channels that show 'burstiness' that correlates to transient behavior in the AS_Q
 - Use these channels to reduce (veto) the GW candidates
 - Keep as much of the detector's livetime as possible
 - Optimize the choice of veto channels, glitch finding method, thresholds of the veto 'significance'

LIGO

Search for good veto channels

• From hand-scanning we knew:

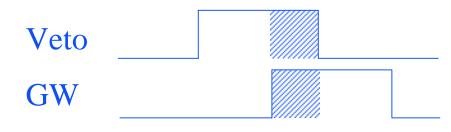

- PEM channels useless for E7 data (event rate too high)
- Typical glitches: L1: PSL glitch, H2: LSC servo glitch
- Selected 8 IFO channels for detailed investigation:

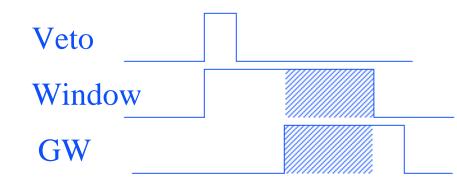
H2:LSC-MICH_CTRL	L1: LSC-MICH_CTRL
H2:LSC-CARM_CTRL	L1:LSC-CARM_CTRL
H2:LSC-REFL_Q	L1: LSC-REFL_Q
H2:LSC-POB_Q	L1 :PSL-FSS_RCTRANSPD_F (mislabeled)

- Chose 2 different filters: 30Hz and 100Hz high pass
- Ran glitch finder (absGlitch) over ~3hrs of data (playground data set)

absGlitch (R.Rahkola, M.Ito)

- absGlitch Monitor:
 - Applies IIR filter
 - Finds (absolute) threshold crossings
 - Last crossing = signal below threshold for next 0.25sec (tunable)
 - Trigger reported from 1st to last threshold crossing

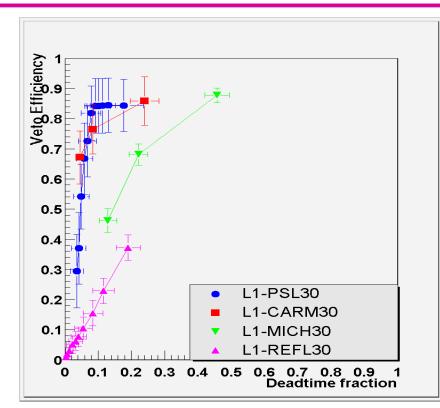



Other Monitors

- Gide (J.Sylvestre)
 - Matched filtering for typical glitch
- PSLmon (J.Zweizig)
 - Uses floating threshold
- → Both give results similar to absGlitch
- Inspiral template triggers (ran on veto channel)
 - Used by Inspiral Group (better than absGlitch)
 - Burst Search:
 - ~same Efficiency (for same dead time)
 - but seem to be orthogonal to absGlitch triggers

Defining Veto's Time Window

- absGlitch reports trigger duration
- Veto event if it overlaps with trigger
 - Used in E7 analysis
- Other definitions possible:
 - E.g. fixed length window 'triggered' by the veto
 - Fixed length window
 'centered' at the veto (IUL)

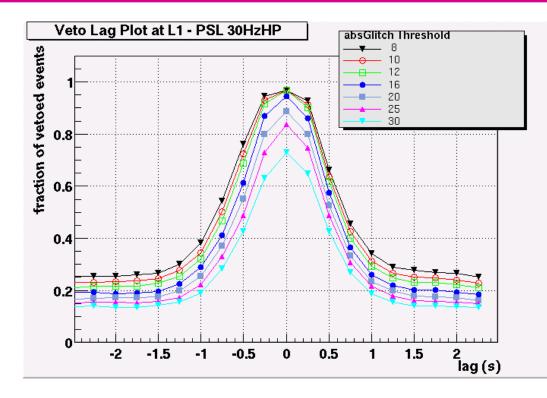


Veto Efficiency vs Dead time

- Apply vetoes to TFCLUSTER event candidates
- → 30Hz HP filter better than 100Hz (more tuning possible)
- L1:
 - ➔ Best channel:
 - L1 :PSL-FSS_RCTRANSPD_F
 - → Best threshold:
 - L1-PSL30: 12 ADC counts (Burst)
 - \rightarrow minimizes residual rate
 - L1-PSL30: 10 ADC counts (Inspiral)

Note: now only 256Hz sampling rate

- Veto Eff. = Fraction of vetoed TFC events
- Dead time = Sum of veto durations
- Plotted for different absGlitch thresholds

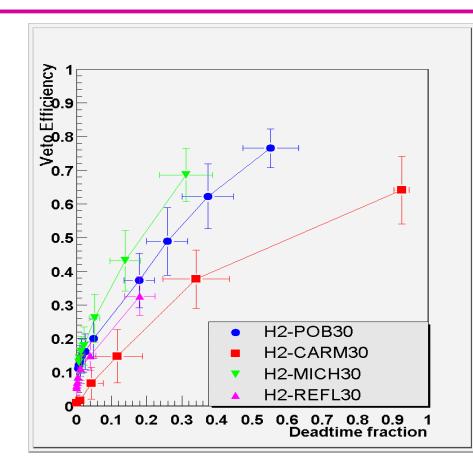

Vetoing by chance: Veto Efficiency after Time Shift

Plot Veto Efficiency vs. artificial time shift:

• Peak:

LIGO

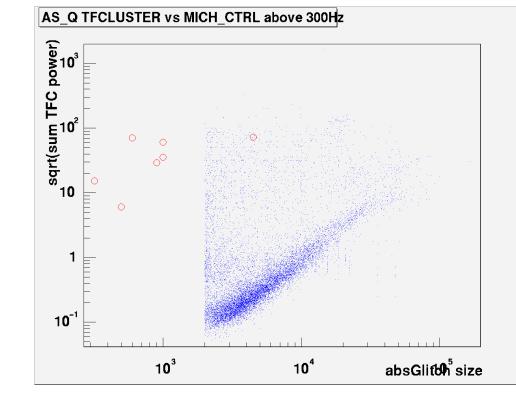
- True Veto Efficiency
- Max for Threshold <= 12</p>
- Wings:
 - coincidence by chance
 - Lowering threshold increases wings
- → Threshold = 12 optimal



Veto for H2

- → Best channel:
 - H2:LSC-MICH_CTRL
- H2 Veto not as good as L1
- But picks out whoppers
- → Chosen threshold (Burst):
 - H2-MICH30: 2000 ADC counts
- Inspiral Group uses matched templates

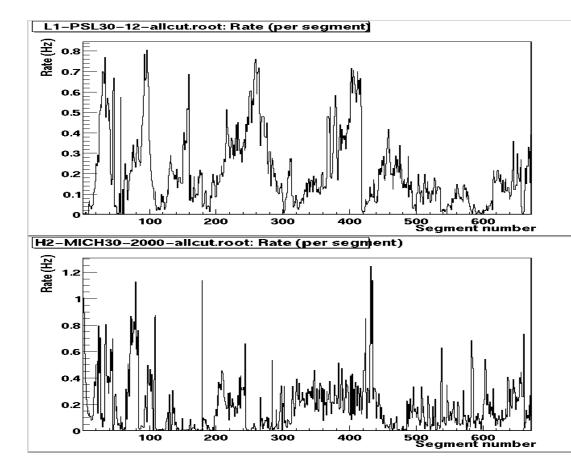
BUT:


- Coupled to AS_Q
 - Vetoing GW events?

GW in MICH_CTRL ?

- Lm excitations DO show up in MICH_CTRL, but
- AS_Q/MICH_CTRL is ~100x bigger than for the frequent servo glitches
- → Only reject events with small enough AS_Q/MICH_CTRL ratio

•Plotted for E7 data

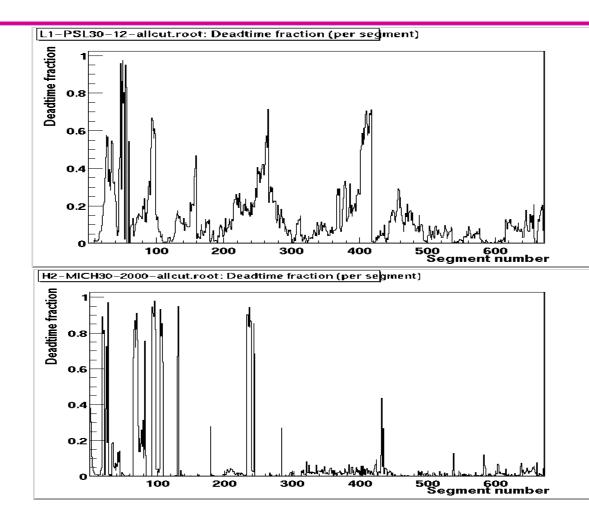

LIGO Full E7 absGlitch Triggers Trigger Rate per Locked Segment

L1:

 relatively smooth variations (lock independent)

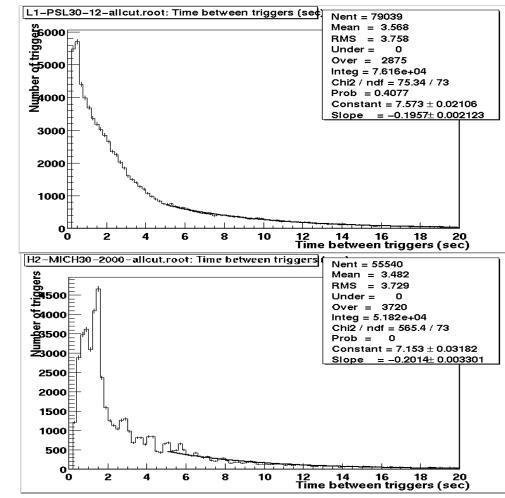
H2:

- ~20 very noisy segments
- Big segment to segment variations

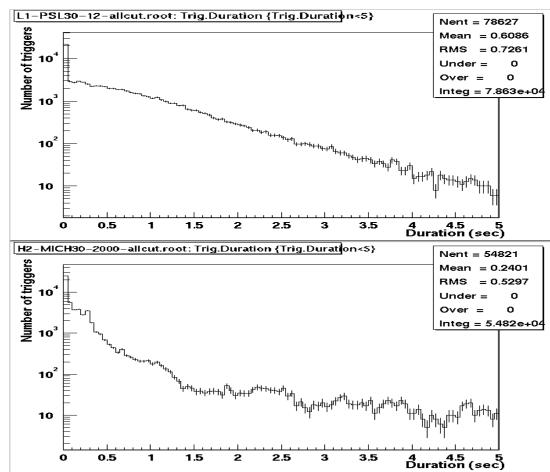


Full E7 absGlitch Triggers Dead Time per Locked Segment

• absGlitch triggers can be quite long


LIGO

- More accurate measure than rate:
 - Dead Time fraction


Full E7 absGlitch Triggers Time between triggers

- Triggers cluster on time scales <~5sec (~trigger duration)
- MICH_CTRL shows
 ~0.8sec periodicity
 (also seen in AS_Q)

Full E7 absGlitch Triggers Trigger Durations

- L1: smooth distribution
- H2: more bumpy (due to oscillations?)
- Excess triggers with duration <~1/30Hz
- single oscillation crosses threshold

Conclusions

• Best channel:

LIGO

- L1 :PSL-FSS_RCTRANSPD_F (now only 256Hz)
- H2:LSC-MICH_CTRL
- Used absGlitch with 30Hz HP filter
 - Good choice, but more tuning possible
- Inspiral Group used matched template veto for H2
- MICH_CRTL with ratio check usable as veto channel
- http://ligo.mit.edu/ldas/research.html