

Composite Test Mass

Adv. LIGO Systems Meeting 17 May 2002 D. Coyne

Sapphire ITM

diameter = 31.4 cmthickness (maximum) =13.0 cm flat-to-flat = 30.61 cmwedge = 1.10 deg total (vertical,

chamfer: 2 mm x 45 deg. total mass = 38.9 Kg

SF4 Cradle + Fused Silica ITM_{4k}

diameter = 36.7 cmthickness =13.0 cm flat-to-flat = 30.61 cmwedge = 0thick end down, symmetrically wedged) chamfer: 2 mm x 45 deg.

total mass = 40.1 Kg

304SS Cradle + Fused Silica ITM_{4k}

diameter = 31.8 cmthickness =13.0 cm flat-to-flat = 30.61 cmwedge = 0

chamfer: 2 mm x 45 deg. total mass = 40.2 Kg

LIGO

Attachments

- Glass Cradle (e.g. SF4):
 - » Might preserve moderately high Q:
 - See Sheila's notes
 - but do we/should we care about preserving Q see David's notes
 - » Can polish flats to $\lambda/10$
 - » hydroxy catalysis bond "ears"
 - » Weld fibers or ribbons to the ears
- Metal Cradle (e.g. 304SS):
 - » VacSeal epoxy bond standoffs
 - » Suspend with "music" wire
 - » Accommodating wire requires a change to the penultimate mass
 - » Alternatively:
 - metalize the mating surface of a fused silica ear
 - braze using a lead-silver alloy
 - Probably requires some complex interface geometry be machined into the cradle for relief of thermal gradients & thermoelastic stresses
 - Compliance at the ear-cradle interface may compromise:
 - the (relatively) high first resonance
 - suspension thermal noise
 - vertical bounce frequency

Optic Boundary Conditions

3 point support with clearance around the barrel

Complete or circumferentially segmented indium layer between the Cradle and the fused silica optic

Material Properties

	density	Young's Modulus	Poisson's Ratio	
Material	g/cc	GPa	-	
Sapphire	3.98	345	0.27	anisotropic
SF4	4.79	56	0.24	
304 Stainless Steel	7.90	200	0.29	
Indium	7.30	13	0.45	
Fused Silica	2.20	73	0.17	
IRG-2 (germanate)	5.00	96	0.3 (?)	small size only?

LIGO-G020241-00-M

Moments of Inertia

- Norna Robertson looked at the suspension control with the SF4 cradle and FS test mass:
 - » replaced the sapphire test mass in the current Matlab quad pendulum model with the SF4 cradle plus FS test mass; no other changes
 - » Penultimate mass = 72 kg in this model
 - » After quick look, seems fine
 - » Pitch mode goes from 0.35 to 0.30 Hz and settling times go from 8.4 sec to 10.4 sec (which can be recovered with additional gain)
 - » Roll mode goes from 10.9 to 9.5 Hz
- Stainless Steel cradle and FS test mass assembly has a closer match to the sapphire test mass principal moments of inertia

	Principal Moments of Inertia (10 ⁶ g cm ²)				
Material	Px	Ру	Pz		
Sapphire Optic	2.89	2.93	4.77		
304 SS + Fused Silica Optic	3.86	4.03	6.90		
SF4 Cradle + Fused Silica Optic	3.80	5.12	7.91		

LIGO-G020241-00-M

LIGO

Frequency Analysis

Test Mass	3 point	Complete Indium 'seal' (1 mm thick)	Segmented Indium Seal
Sapphire		8600 Hz (?)	
SF4/FS	432 Hz, Optic rolling	2172 Hz, "butterfly"	NA
SS/FS	NA	2888 Hz, "butterfly"	NA
IRG-2/FS	510 Hz, Optic pitching	NA	NA