

The Analysis of LIGO Data

Physics 237b Guest Lecture 01 May 2002

Albert Lazzarini

LIGO Laboratory California Institute of Technology Pasadena, California 91125

LIGO-G020222-00-E

Outline of this lecture

- LIGO data attributes
- Noise processes
 - Time and frequency domain properties
- Time-frequency classification of GW signal properties
- Search tecniques for specific classes of signals
 - Computational implementation

LIGO First Generation Detector Limiting noise floor

- Interferometry is limited by three fundamental noise sources
 - <u>seismic noise</u> at the lowest frequencies
 <u>thermal noise</u> (Brownian motion of mirror materials, suspensions) at intermediate frequencies
 <u>shot noise</u> at high frequencies

Many other noise sources lie beneath and must be controlled as the instrument is improved

Detection is expected to be at the limits of LIGO I sensitivity

Jones, gr-qc/0111007

Provided by K. Thorne and others for the "LIGO II Conceptual Project Book", September 1999, Document # LIGO-M990288

Interferometer Data Channels

LIGO-G020222-00-E Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

- 1% of data is the GW channel, "h[t]"
- 99% are auxiliary channels (over 5000 channels!):
 - Monitor interferometer servos (>50 loops)
 Laser f, laser I, mirror θ,φ , ...
 - Monitor instrument state vector
 - Gains, offsets, ...
 - Monitor environment
 - Power line voltage stability, $v_{n \cdot 60 Hz}[t]$ -- look for transient pick up
 - Accelerometers -- high f shocks, vibrations, f>100Hz)
 - Magnetic fields, B[f] -- electromagnetic interferences
 - Seismometers -- low f ground motion, f< 100Hz)
 - Acoustics near test mass vacuum chambers
 - Vacuum monitors -- pressure outgassing bursts
 - Muon shower detectors -- site-wide cosmic ray showers

Collection of Multiple Data Channels

- How will these be used?
 - Cross-correlation and regression analysis in order to reduce RMS of h[t] channel
 - Useful for high SNR signals with known transfer function to h[t]
 - Validation of "nominal" instrument behavior
 - Continuously monitor interferometer, environment for "nominal behavior", within, say +/- 3σ for stable channels...
 - Develop an archive of "typical channel behavior", power spectra, etc.
 - Empirically derived template bank of instrumental "glitches" for detection & vetoing
 - Generate vetoes using auxiliary channels when these pick up transients in the environment
 - Traffic
 - Logging (in Livingston)
 - •••

E7 sensitivities for LIGO Interferometers 28 December 2001 - 14 January 2002

Strain Sensitivities for the LIGO Interferometers for E7

- 1e-16 1e-17 1e-18 1e-19 h[f], 1/Sqrt[Hz] 1e-20 $1/f^{3}$ 1e-21 1e-22 LHO 4km 1e-23 LLO 4km $P_{laser} = 0.012W$ LHO 2km LIGO I SRD Goal 1e-24 10 100 1000 10000 Frequency [Hz] LIGO-G020222-00-E
- •Used 10⁻³ of ultimate laser power
 - "Automatic" 30x improvement at high f
- Investigating "f⁻³" noise at low f
- Electronics upgrade for sensitive servos
- Damping of structural resonances near 200 Hz on optics benches

•Upgrade seismic system at Livingston to provide greater availability

8 LIGO LABORATORY CALTECH Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

- So...
 - Unless Nature is very serendipitous ...
- We will have to work very hard to sieve through the interferometer data to look for putative events with the initial inferferometers
 - Integrated signal-to-noise ratios of O[10]
 - Instantaneous signal-to-noise ratios of O[10-4] or less ...
- Focus will be on understanding, reducing noise
 - Instrumental improvements prior to digitization & acquisition
 - Signal processing techniques after acquisition
- Hypothesis testing:
 - Signal is present vs. signal is not present

(Very) Brief Summary of Random Processes & Signal Noise

- n(t) is a randomly varying signal
 - Gaussian process:

$$P(n) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(n-\mu)^2}{2\sigma^2}} < n \ge \mu = \int_{-\infty}^{\infty} nP(n)dn < n^2 \ge \sigma^2 + \mu^2 = \int_{-\infty}^{\infty} n^2P(n)dn$$

- Can assume μ =0 without loss of generality
- Ensemble averages, time averages
 - Time average: $< n(t) >_{t} = \lim_{\infty} \frac{1}{T} \int_{-T/2}^{T/2} n(t) dt$ Ensemble average: $< n >_{p} = \int_{-\infty}^{\infty} nP(n) dn$
 - Stationarity: μ , σ , etc. do not vary with time
 - Ergodicity: Probability distribution of n(t) over a long period T is the same as P(n) at one instant, t'
 - <u>crucial assumption because we do not have N>>1 interferomters</u> <u>taking data at the same time!</u>

Fourier Transforms of Time Dependent Signals

 Continuous-time (infinite time duration)

Discrete-time

(finite time stretch T)

- $\hat{x}(f) = \int_{-\infty}^{\infty} x(t)e^{-2\pi i f t} dt = \mathcal{F}[x(t)]$ $x(t) = \int_{-\infty}^{\infty} \hat{x}(f)e^{2\pi i f t} df = \mathcal{F}^{-1}[\hat{x}(f)]$ $\mathcal{F}^{-1}\mathcal{F}[x(t)] = x(t) \Longrightarrow \delta(t-t') = \int_{-\infty}^{\infty} e^{-2\pi i f (t-t')} df$ $\int_{-\infty}^{\infty} \delta(t-t') dt = 1$ $\hat{x}(f_i) = \sum_{n=0}^{N-1} x(t_n)e^{-2\pi i f_i t_n} \Delta t = \mathcal{F}[x(t_n)] \ ; \ t_n = n\Delta t = \frac{nT}{N}$ $x(t_n) = \sum_{i=0}^{N-1} \hat{x}(f_k)e^{-2\pi i f_k t_n} \Delta f = \mathcal{F}^{-1}[\hat{x}(f_k)] \ ; \ f_k = k\Delta f = \frac{k}{T}$ $\mathcal{F}^{-1}\mathcal{F}[x(t_j)] = x(t_i) \Longrightarrow \delta_{ij}$
- Computational cost to perform transform (FFT): 5 N log₂ [N]
 - 1000 s of 16384 Sample/s data: 2x10⁹ floating point operations (FLOP)
 - To keep up with data: 2 MFLOP/s (MFLOPS)
 - Perform 20,000 at same time: 40 GFLOPS -> clusters of CPUs
 - 90+% of CPU time involved in f<->t transformations

LIGO-G020222-00-E Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

- Pipeline analysis of LIGO data computationally dominated by cost of Fast Fourier Transforms (FFT).
 - Non-Hierarchical Binary Inspiral Search spends an average of ~90% of CPU cycles performing FFT. _
- Most practical/efficient data segment size as much as 2²⁰ points for Binary Inspiral Search. • LIGO-G020222-00-E LIGO LABORATORY CALTECH

Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

Useful Formulae and Identities

• Translation:

 $\mathcal{F}[x(t+t')] = \hat{x}(f)e^{-2\pi i f t'}$

• Useful identity: $\hat{n}(f) = \hat{n}^*(-f)$ for real n(t) Parseval's Theorem

 $\int x(t)^2 dt =$ "Integrated Signal Energy"

 $= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \hat{x}(f)e^{2\pi i f t}df\right] \left[\int_{-\infty}^{\infty} \hat{x}(f'')e^{2\pi i f'' t}df''\right]dt$ $= \int_{-\infty}^{\infty} \int_{-\infty}^{-\infty} df \, df \left\{ \hat{x}(f) \hat{x}(f'') \right\} \int_{-\infty}^{\infty} e^{2\pi i (f+f'')t} dt$ $= \int_{-\infty}^{-\infty} \left| \hat{x}(f) \right|^2 df$

Convolution

$$c(\tau) = \int_{-\infty}^{\infty} a(t)b(\tau - t) dt$$
$$\hat{c}(f) = \int_{-\infty}^{\infty} d\tau \int_{-\infty}^{\infty} dt \ a(t)b(\tau - t)e^{-2\pi i f \tau}; \ t' = \tau - t$$
$$\hat{c}(f) = \int_{-\infty}^{\infty} dt' \ b(t')e^{-2\pi i f t'} \int_{-\infty}^{\infty} dt \ a(t)e^{-2\pi i f t}$$
$$\hat{c}(f) = \hat{a}(f)\hat{b}(f)$$

LIGO-G020222-00-E Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

$$\mathbf{Correlation}_{R_{xy}}(\tau) = \int_{-\infty}^{\infty} x(t)y(\tau+t)dt$$

$$(1/2)S_{xy}(f) = \int_{-\infty}^{\infty} R_{xy}(\tau)e^{-2\pi i f \tau}d\tau$$

$$= \int_{-\infty}^{\infty} d\tau \int_{-\infty}^{\infty} dt \ x(t)y(\tau+t)e^{-2\pi i f \tau}; t'=t+\tau$$

$$= \int_{-\infty}^{\infty} dt' y(t')e^{-2\pi i f t'} \int_{-\infty}^{\infty} dt \ x(t)e^{2\pi i f t}$$

$$= \hat{x}(f)\hat{y}^{*}(f) \leftarrow \text{Cross-correlation}$$

$$= \int_{-\infty}^{\infty} S_{xx}(f) = |\hat{x}(f)|^{2} \leftarrow \text{Autocorrelation}$$

$$= 13$$

LIGO LABORATORY CALTECH γ^{2xx} (J) (U)

- $\begin{array}{l} \text{Different Fourier components of n(t) are independent of each other:}} & \stackrel{(t,t)}{=} \prod_{T \to \infty} \left\langle \int_{-T/2}^{T/2} dt \ n(t) e^{-2\pi i f t} \int_{-T/2}^{T/2} dt' \ n(t') e^{2\pi i f' t'} \right\rangle_{T} & \stackrel{t}{=} \frac{1}{T \to \infty} \int_{-T/2}^{T/2} dt \int_{-T/2}^{T/2} dt' \ \langle n(t')n(t) \rangle_{T} e^{-2\pi i (ft-f't')}; t' = t + \tau & \stackrel{(t,t)}{=} t + \tau & \stackrel{(t,t)}{=} t + \tau \\ & = \prod_{T \to \infty} \int_{-T/2}^{T/2} dt \int_{-T/2}^{0} t' \ \langle n(t')n(t) \rangle_{T} e^{-2\pi i (ft-f't')}; t' = t + \tau & \stackrel{(t,t)}{=} t + \tau & \stackrel{(t,t)}{=} t + \tau \\ & = \lim_{T \to \infty} \frac{1}{T} \left(\int_{-T}^{0} \int_{-T/2}^{\tau+T/2} e^{-2\pi i t(f-f')} R_{n}(\tau) e^{-2\pi i f \tau} d\tau dt + \int_{0}^{T} \int_{\tau-T/2}^{T/2} e^{-2\pi i t(f-f')} R_{n}(\tau) e^{-2\pi i f \tau} d\tau dt \right) \\ & = \lim_{T \to \infty} \int_{-T}^{T} d\tau \left\{ e^{-\pi i (f-f')\tau} \frac{\sin \left[\pi (T |\tau|)(f f') \right]}{\pi (T |\tau|)(f f')} \left(1 \frac{|\tau|}{T} \right) \right\} R_{n}(\tau) e^{-2\pi i f \tau} \\ & = \frac{1}{2} S_{n}(f) \delta(f f') & \delta(f-f') & \delta(f-f') & f' \\ \end{array} \right.$
 - Independence of frequency bins allows one to estimate statistics of signal, noise using properties of Gaussian noise (central limit theorem) and statistical tests, such as Neiman-Pearson, χ^2 , ...

As soon as noise properties exhibit transient behavior (on the time scale of the analysis), this introduces frequency correlations in the spectra

Data Flow: Pre-processing

LIGO-G020222-00-E Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

Interferometer Data

Instrumental transients from Caltech 40 m prototype

Real interferometer data are UGLY!!!

(Gliches - known and unknown)

Data Pre-processing: removing instrumental effects

LIGO Data Conditioning Computational Costs

Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

8192 Hertz

LIGO LABORATORY CALTECH

4-Way PIII Xeon 550M Hz 1 G B512KB

Analyzing discretely sampled time series data

LIGO-G020222-00-E

Time-Frequency Analysis of Data Spectrograms

- Dynamically changing time series contain information not well represented in a single power spectrum or FFT of the data
- Time-frequency analysis allows "visualization" of the dynamics in the data -- time dependent of individual frequency components produce "image" of a process
- Many different ways to create the time-frequency image -- all derive from a generalized f-t transform

Time-frequency analysis

Generalized t-f transform				
$P(t,\omega) = \frac{1}{4\pi^2} \iiint e^{-2\pi i(\theta t + \omega \tau - \tau \upsilon)} \Phi(\tau,\theta) \hat{S}^* [\upsilon + \theta/2] \hat{S} [\upsilon - \theta/2] d\tau d\upsilon d\theta$				
Reference	<i>Kernel</i> $\Phi(\tau, \theta)$	Distribution $P(t,\omega)$		
Wigner ¹ , Ville ²	1	$\frac{1}{2\pi}\int e^{-i\omega\tau}s^*[t-\tau/2]s[t+\tau/2]d\tau$		
Margenau & Hill ³	$\cos(\theta \tau/2)$	$\operatorname{Re}\left[\frac{1}{\sqrt{2\pi}}s(t)e^{-i\omega\tau}\hat{S}^{*}(\omega)\right]$		
Kirkwood ⁴ ,Rihaczek ⁵	$e^{i heta au/2}$	$\frac{1}{\sqrt{2\pi}}s(t)e^{-i\omega\tau}\hat{S}^{*}(\omega)$		
sinc ⁶	$\frac{\sin(a\theta\tau)}{a\theta\tau}$	$\frac{1}{4\pi a}\int \frac{e^{-i\omega\tau}}{\tau} \int_{t-a\tau}^{t+a\tau} s^* [x-\tau/2]s[x+\tau/2]dxd\tau$		
Page ⁷	$e^{i heta au /2}$	$\frac{\partial}{\partial t} \left \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-i\omega x} s[x] dx \right ^{2}$		
Choi & Williams ⁸	$e^{-(heta au)^2 / \sigma}$	$\frac{1}{4\pi^{3/2}} \iint \sqrt{\frac{\sigma}{\tau^2}} e^{-\sigma(\upsilon-\tau)^2/(4\tau^2) - i\omega\tau} s^* [x-\tau/2] s[x+\tau/2] dx d\tau$		
Spectrogram	$\int dx e^{-i\theta x} h^* \big[2\pi (x-\tau/2) \big] h \big[2\pi (x+\tau/2) \big]$	$\left \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{t}e^{-i\omega x}s[x]h[x-t]dx\right ^{2}$		
E.P. Wigner, Phys. Rev., Vol 40 (1932) p749.				
J. Ville, Cables et Transmi H. Margenau & R. N. Hill	······································			
J.G. Kirkwood. Phys. Rev., Vol. 44 (1933) p31.				
W. Rihaczek, IEEE Trans. Informat. Theory, Vol. IT-14 (1968) p369.				
L. Cohen, J. Math. Phys., Vol 7 (1966) p781.				
C.H. Page, J. Appl. Phys., Vol 23 (1952) p103.				
H.I. Choi & W. J. Williams, IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-37 (1989)				

LIGO-G020222-00-E

1) 2) 3) 4) 5) 6) 7) 8)

Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

Time-frequency spectrograms

Example from acoustics & zoology: Bat chirps

Good sources of information:

- http://www-dsp.rice.edu/software/TFA
- L. Cohen, Proc. of the IEEE, Vol 77, No. 7, July 1989
- W. Anderson & R. Balasubramanian, PRD D60 102001
 - Applied to GW detection& references therein.

UGO*Time-Frequency* Characteristics of GW Sources

UGO*Time-Frequency* Characteristics of GW Sources

- Long time Fourier transforms of time series h[t] for different components of previous f-t map.
 - 250k points in series

Time-Frequency Characteristics of GW Sources LOSS of SNR due to short time FTs

- For CW signal:
 - SNR (high res.) ~ 30;
 - SNR(low res.) ~ 1.4
 - For unresolved (line) signal: signal in single 1 bin remains constant, but background power grows as Δf increases amplitude SNR~1/Sqrt[Δf]
- Stacking is more computationally efficient for N data points and m stacks:

LIGO-G020222-00-E Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

LIGO LABORATORY CALTECH

 $R_m = 0.3333$

LIGO *Time-Frequency Characteristics of GW Sources*

- Bursts are short duration, broadband events
- Chirps explore the greatest time-frequency area
 BH ringdowns will be associated with chirps
- CW sources have FM characteristics which depend on position on the sky (*and source parameters*)
- Stochastic background is stationary and broadband
- For deterministic sources, the optimal signal to noise ratio is obtained by integrating signal <u>along</u> the trajectory
 If SNR >> 1, kernel ∝ Isignall^2 power or square-law detector
 If SNR <1, kernel ∝

Itemplate* signal matched filter or

 $|signal_j^* signal_k|$ cross-correlation for stochastic singals

•Optimal filter:

kernel \propto **1/(***noise power***)** weight integral by inverse of noise --- look where detector is most quiet

Science in LIGO I Data analysis strategies

- For a given source of gravitational waves
 - Optimal filter may be derived based on a model of:
 - Noise properties of the instrument
 - Gaussian is assumed because it makes the analysis tractable
 - Ultimately need to rely on instrument performance improvements in order to approach Gaussian characteristics of the data
 - Requiring coincidence among multiple similar devices further reduces non Gaussian noise
 - Interaction of the antenna (GW detector) with the putative gravitational waves from the source
 - Requires model of waveform, statistics, time-frequency domain of signal
 - The more information, the more robust the filter
 - Any information is useful and can be used to formulate a filter

Optimal Filters - cont.

- Compact coalescences
 - Best studied sources probably best understood
 - Phase, amplitude dependence can be modeled
 - Provides family of parametrized templates for matching against the data
- Stochastic gravitational wave background
 - Assumption of white (at least over the few decades LIGO will observe), Gaussian, isotropic background makes analysis tractable
 - Requires cross-correlation between (at least) two detectors
 - Use of bar detector to modulate signal by physically rotating bar can be exploited to develop an optimal filter in the presence of terrestrial correlated noise

- Spinning neutron stars (CW sources, GW pulsars)
 - Long lived signal not a transient
 - Daily and yearly modulations of frequency due to Earth's motion relative to the Solar System barycenter provides a unique signature with which to develop an optimal filter
 - Source may exhibit intrinsic variaitons of period (spindown) constitutes a large parameterizable space over which to search
 - Frequency modulation swamps frequency resolution of analysis
 Many different templates required, depending on source sky location, intrinsic parameters
 - The one problem for LIGO that could potentially use infinite CPU power to fully exploit the data
 - "Unbiased all-sky search"

$$\begin{split} f - f' &= f \frac{v}{c} \cos \theta \\ \delta |f - f'| \approx 10^{-4} f \sin \theta \ \delta \theta \leq \Delta f |_{\text{Fourier trasform}} = \frac{1}{T_{obs}} \\ \delta \Omega \approx \pi \delta \theta^2 &= 10^8 \pi \left(\frac{1}{fT_{obs}}\right)^2; \ fT_{obs} = N_{cycles} \\ N_{\text{sky pixels}} &\geq \frac{4\pi}{\delta \Omega} = 4 \times 10^{-8} \left(N_{cycles}\right)^2; \\ 1 \text{ month } @ \ 500Hz \rightarrow N_{cycles} \approx 10^9 \\ N_{\text{sky pixels}} &\geq 10^{11} \left(\frac{T}{1 \text{ month}}\right)^2 \end{split}$$

30

LIGO-G020222-00-E Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

Optimal Filters - cont.

- Transient (burst) phenomena
 - Waveforms are less well known
 - Model in terms of time-frequency volume and shape of volume occupied by any source type
 - Most challenging experimentally because many instrumental, geophyiscal phenomena can manifest themselves as burst noise in the interferometer data
 - Most like the cryogenic resonant bar detectors
 - Adopt/adapt experiences and techniques from this community for analysis
 - Rely on coincidence analysis among multiple detectors (of all types) to reduce backgrounds
 - Expect useful collaboration with e.g., astroparticle physics detectors for v, γ event coincidences

Signals with parametrizable waveforms

Deterministic

CW: <u>http://www.lsc-group.phys.uwm.edu/pulgroup/</u> Inspiral: <u>http://www.lsc-group.phys.uwm.edu/iulgroup/</u>

Statistical

Stochastic background: <u>http://feynman.utb.edu/~joe/research/stochastic/upperlimits/ /</u>

LIGO-G020222-00-E

Optimal Filtering and Signal Processing Deterministic, parametrizable signals -- e.g. chirps, ringdowns, CWs,

Measurement s, (may) contain signal h, contains noise n:

$$s(t) = h(t) + n(t); n \gg h$$

$$\langle n(t) \rangle = 0 ; h(t) = \alpha T_i(t);$$

$$\langle n(t)h(t) \rangle = 0;$$

- $\alpha T_i(t)$ is one of a family of fiducial (expected) waveforms or *templates* of type *i* with unknown time origin t_0 and amplitude α ; e.g.
 - $i=\{+ or x; m_i; \phi_0; ...\}$
- Design optimal (linear) correlation filter, Q, that maximizes chance of detecting *T* in s(t).
 - General expression for a correlation filter:

$$C(t_0) = \int_{-\infty}^{\infty} s(t - t_0)Q(t)dt;$$

$$\langle C \rangle = \int_{-\infty}^{\infty} \alpha T(t - t_0)Q(t)dt$$

$$= \alpha \int_{-\infty}^{\infty} \hat{T}(f)e^{-2\pi i f t_0} \hat{Q}^*(f)df$$

$$N = C - \langle C \rangle; \langle N \rangle \equiv 0$$

$$\langle N^2 \rangle = \langle C^2 \rangle - \langle C \rangle^2$$

$$= \langle \int \hat{n}(f) \hat{Q}^*(f) df \int \hat{n}(f') \hat{Q}^*(f') df' \rangle$$

$$= \int df \int df' \hat{Q}^*(f) \hat{Q}^*(f') \langle \hat{n}(f) \hat{n}(f') \rangle$$

$$= \frac{1}{2} \int S_n(f) |Q(f)|^2 df$$

LIGO-G020222-00-E Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

Maximize P(detection) => Maximize signal-to-noise ratio (SNR):

$$Max[SNR = \frac{\langle C \rangle}{\langle N^2 \rangle^{1/2}}] \Rightarrow Max[(SNR)^2 = \frac{\langle C \rangle^2}{\langle N^2 \rangle}]$$
$$\delta(SNR)^2 = \frac{\delta\langle C \rangle^2}{\langle N^2 \rangle} - \frac{\langle C \rangle^2 \delta \langle N^2 \rangle}{\langle N^2 \rangle^2} = 0$$
$$= \frac{2\langle C \rangle}{\langle N^2 \rangle^2} (\langle \delta C \rangle \langle N^2 \rangle - \langle C \rangle \langle N \delta N \rangle) = 0$$
$$\langle \delta C \rangle \langle N^2 \rangle = \langle C \rangle \langle N \delta N \rangle$$

• Variation and maximization is with respect to optimal filter, δQ :

•Equate LHS, RHS:

$$\left\langle \delta C X N^2 \right\rangle = \left\langle C X N \delta N \right\rangle$$
$$\hat{T}(f) e^{-2\pi i f t_0} \left[\int S_n(f') \left| Q(f') \right|^2 df' \right] = S_n(f) Q(f) \left[\int \hat{T}(f') e^{-2\pi i f t_0} \hat{Q}^*(f') df' \right]$$

•Require <u>frequency dependent</u> coefficients of [...] to be <u>equal for all f:</u>

$$\hat{T}(f)e^{-2\pi i f t_0} = S_n(f)Q(f) \Longrightarrow Q(f) = \frac{\hat{T}(f)e^{-2\pi i f t_0}}{S_n(f)}$$

Optimal filter for this problem

•Check that [...] == [...] with Q(f) from above:

$$\int S_n(f') |Q(f')|^2 df']? = ? \left[\int \hat{T}(f') e^{-2\pi i f t_0} \hat{Q}^*(f') df' \right] !$$

LIGO-G020222-00-E Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

Detection vs. Parameter Estimation

- Detection is possible at lower SNR than parameter extraction
 - Can detect before you can "see" the pattern

LIGO-G020222-00-E Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

Detections vs. Parameter Estimation

•...what if you don't know the orientation, or pattern exactly?

$$C(t_0:\{p\}) = \int_{-\infty}^{\infty} \frac{\hat{s}(f)\hat{T}^*_{\{p\}}(f)}{S_n(f)} e^{2\pi i f t_0} df$$

- C(t₀:{p}) is a <u>family</u> of derived correlation time series
 - {p} is a set of parameters used to characterize the templates T
 - Intrinsic parameters: masses, other GR parameters
 - <u>Extrinsic parameters:</u> distance, orbital inclination, phase, position in the sky, ...
 - Dimensions of {p} can be HUGE (e.g., 10⁴ 10⁵) if one wants a reasonable certainty of detecting a weak signal with unknown parameters
 - Example: Search for a sinusoid with unknown frequency between 10 Hz < f < 500 Hz in a data stream lasting T = 1000 s;
 - To see signal, need to acquire data at $S > 1000 \text{ s}^{-1}$ (several factors greater)
 - Number of frequency bins in Fourier transform of data = $ST \sim few \ x \ 10^6$
 - Each bin is orthogonal to all others -> need to test every bin since sinusoid will be contained within only one bin

Matched Filtering with Templates

Mass parameter space for inspiraling binary coalescences

Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

LIGO

40

Compact Binary Inspirals Data Analysis Flow

Non-Hierarchical Search for NS-NS Inspiral (1.4M_s, 1.4M_s) ~ {15, 32, 67} GFLOPS.

•

- 512 Hertz band is adequate for detections (blue curve).
- Hierarchical strategies expected to decrease cost by 5x to 30x.
- Ringdown Search estimated to be roughly 10% as costly.
- Other searches (excluding all-sky pulsar search) are single node compute problems.

LIGU-GUZUZZZ-UU-E

Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

Inspiral E7 tests - Template Search

- Preliminary results •
 - Code performance in a parallel computer is degraded by serial (bottleneck) components of code -- usually interprocessor I/O $\frac{T_1}{T_N}$
 - Governed by Amdahl's Law:

$$\frac{1}{N} = \frac{s+p}{s+\frac{p}{N}} = \frac{N}{1+s(N-1)} \Longrightarrow \begin{cases} N, s \to 0\\ 1, s \to 1 \end{cases}$$

MPI computation performance with increasing number of nodes^N

Reference: Amdahl, G.M. Validity of the single-processor approach to achieving large scale computing capabilities. In AFIPS Conference Proceedings vol. 30 (Atlantic City, N.J., Apr. 18-20). AFIPS Press, Reston, Va., 1967, pp. 483-485.

Monte Carlo (Statistical) techniques are needed to characterize complex detection probabilities

Inject a large number of simulated signals varying, e.g., distance, (m₁,m₂).
Retrieve events by same algorithm used for data
Confirm detected parameters
Determine efficiency of search (model dependent)
Errors in distance measurements from presence of noise are consistent with SNR

fluctuations

Setting a limit on inspiral coalescence rate within the galaxy (1994 40m prototype data)

Quantitative Science: making a probabilistic statement about the likelihood of an observation (or lack thereof)

B. Allen et al., gr-qc/9903108

• Cross-correlate the output of two (*independent*) detectors with a suitable filter kernel:

$$C(T) = \int_{-T/2}^{T/2} dt \int_{-\tau/2}^{\tau/2} d\tau' \quad s_1(t)s_2(t-\tau')Q(\tau')$$

- Requires:
 - (i) Two detectors must have overlapping frequency response functions i.e., $s_1(f)s_2(f) \neq 0$, $\{f\} \notin \emptyset$

(ii) Detectors sensitive to same polarization state (+, x) of radiation field, h_{GW} .

(iii) Baseline separation must be suitably "short":

$$L < \lambda_{GW}(f) \Longrightarrow \frac{fL}{c} < 1$$

LIGO

• Ideally, the stochastic background correlation increases with integration time as:

$$SNR \propto \frac{3H_0^2}{10\pi^2} \sqrt{T_{\text{int}}} \left[\frac{\gamma^2(f_0)\Omega_{GW}^2 \Delta f}{f^6 S_{1,n} |f| S_{2,n} |f|} \right]^{\frac{1}{2}}$$

- Assumes no additional sources of correlated noise

•cannot discriminate with a single measurement

 Mutual orientation dependence of GW background signal may be exploited to discriminate among possible correlated sources

•References:

»P.F. Michelson, Mon. Not. Roy. Astron. Soc. 227, 933 (1987).

»N. Christensen, Phys. Rev. **D46**, 5250 (1992)

»E. Flanagan, Phys. Rev. D48, 2389 (1993), astro-ph9305029

»B. Allen and J. Romano, Phys. Rev. D59, 102001 (1999), gr-qc9710117

»M. Maggiore, Trieste, June 2000: Gravitational Waves: A Challenge to Theoretical Astrophysics, gr-qc-0008027

»L.S. Finn and A. Lazzarini, Phys. Rev. D, 15 (2001)

Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

Uptimal filtering in the presence of background correlation

Optimal filtering in the presence of background **LIGO** *correlation*

$$\left\langle C(T,\vec{\mathbf{\Omega}}_{1},\vec{\mathbf{\Omega}}_{2})\right\rangle = T\int_{0}^{\infty} df \left(\pm \frac{3H_{0}^{2}}{20\pi^{2}\left|f\right|^{3}}\Omega_{GW}\left(\left|f\right|\right)\gamma\left(\left|f\right|,\vec{\mathbf{\Omega}}_{1},\vec{\mathbf{\Omega}}_{2}\right) + S_{12}\left(\left|f\right|\right)\right)\tilde{Q}(f) ;$$

Choose two orientations of one detector { Ω_1 , $\Omega_1^{'}$ }, for which $\gamma(f, \Omega_1, \Omega_2) = -\gamma(f, \Omega_1^{'}, \Omega_2)$, denote C_+ , C_- values of integrated correlation in these two orientations:

$$\langle C(T) \rangle = \langle C_{+}(T/2) - C_{-}(T/2) \rangle$$

$$\langle C(T) \rangle = T \int_{0}^{\infty} df \left(\frac{3H_{0}^{2}}{20\pi^{2}|f|^{3}} \Omega_{GW}(|f|)\gamma(|f|,\vec{\Omega}_{1},\vec{\Omega}_{2}) \right) \tilde{Q}(f)$$

$$\sigma_{C}^{2} = \langle C^{2} \rangle - \langle C \rangle^{2} = 2\sigma_{C+,-}^{2}$$

$$\sigma_{C}^{2} = \frac{T}{2} \int_{0}^{\infty} df \left(S_{1}(|f|)S_{2}(|f|) + S_{12}^{2}(|f|) \right) \left[\tilde{Q}(f) \right]^{2}$$

$$SNR = \frac{\langle C \rangle}{\sigma_{C}} \xrightarrow{max} \frac{\delta[SNR]}{\delta[\tilde{Q}]} = 0 \implies \widetilde{Q}(f) = \left(\frac{\gamma(|f|,\vec{\Omega}_{1},\vec{\Omega}_{2})\Omega_{GW,\text{mod}\,el}(|f|)}{|f|^{3}(S_{1}(|f|)S_{2}(|f|) + S_{12}^{2}(|f|))} \right)$$

$$Optimal filter for this problem$$

LIGO-G020222-00-E Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

Coherence plots (LLO-LHO 2k)

LIGO-G020222-00-E Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

• Detection: choosing between two hypotheses:

H0: y = n vs. H1: y = s + n

- Two types of error:
 - False alarm:

 $\alpha = P(H1 \mid H0)$

- False dismissal:

 $\beta(s) = P(H0 | H1)$

Data series

 $\overline{\mathbf{x}} = \overline{\mathbf{n}} + \overline{\mathbf{s}} - \text{measured series of data points}$ $\overline{\mathbf{x}} = \{x_1, x_2, \dots, x_N\} \in \mathbb{R}^N - \text{a vector of length N}$ $\overline{\mathbf{n}} = \{n_1, n_2, \dots, n_N\} - \text{noise vector}$ $\overline{\mathbf{s}} = \{s_1, s_2, \dots, s_N\} - \text{signal vector (may or may not be present)}$ $< \overline{\mathbf{n}}^T \cdot \overline{\mathbf{n}} >= \widetilde{\mathbf{C}} - \text{noise correlation matrix (diagonal if noise is white, Gaussian)}$

What is probability of observing the measured data if $\overline{\mathbf{x}} = \overline{\mathbf{n}} + \overline{\mathbf{s}}$ vs. $\overline{\mathbf{x}} = \overline{\mathbf{n}}$?

$$\begin{split} P[n_i] &= \frac{1}{\sqrt{2\pi\tilde{C}_i^2}} e^{-n_i^2/2C_i^2}; P[\overline{\mathbf{n}}] = \frac{1}{\sqrt{2\pi}\det\|\tilde{C}\|} e^{-\frac{1}{2}\overline{\mathbf{n}}^{\mathrm{T}}\cdot\tilde{\mathbf{C}}^{-1}\cdot\overline{\mathbf{n}}} \\ P[\overline{\mathbf{x}}|\mathbf{0}] &= P[\overline{\mathbf{n}}] = \frac{1}{\sqrt{2\pi}\det\|\tilde{C}\|} e^{-\frac{1}{2}\overline{\mathbf{x}}^{\mathrm{T}}\cdot\tilde{\mathbf{C}}^{-1}\cdot\overline{\mathbf{x}}} \\ P[\overline{\mathbf{x}}|\overline{\mathbf{s}}] &= P[\overline{\mathbf{x}}\cdot\overline{\mathbf{s}}|\mathbf{0}] = \frac{1}{\sqrt{2\pi}\det\|\tilde{C}\|} e^{-\frac{1}{2}(\overline{\mathbf{x}}\cdot\overline{\mathbf{s}})^{\mathrm{T}}\cdot\tilde{\mathbf{C}}^{-1}\cdot(\overline{\mathbf{x}}\cdot\overline{\mathbf{s}})}; \end{split}$$

•Also applies on resultant of a linear filtering of **x**, e.g., $\xi = \mathbf{x}^T \cdot \mathbf{Q} \cdot \mathbf{T}$

Likelihood

Baye'sLaw:

$P[\bar{\mathbf{s}}_{i} \bar{\mathbf{x}}] = \frac{P[\bar{\mathbf{x}} \bar{\mathbf{s}}_{i}]P[\bar{\mathbf{s}}_{i}]}{P[\bar{\mathbf{x}}]}; i \in \{1, 2, 3, \dots, N\} family of$	f signals			
$P[\bar{\mathbf{s}}_i \bar{\mathbf{x}}]$: Probability[signal _i] data]				
$P[\overline{\mathbf{x}} \overline{\mathbf{s}}_i]$: Probability[<i>data</i> signal _i]				
$P[\bar{s}_i]$: A priori probability[<i>signal</i>]				
$P[\overline{\mathbf{x}}]$: A priori probability[<i>data</i>] = $P[\overline{\mathbf{x}} \overline{\mathbf{s}} = 0]P[0] + P[\overline{\mathbf{x}} \overline{\mathbf{s}} \neq 0]P[\overline{\mathbf{s}} \neq 0]$				
$P[\overline{\mathbf{x}} \overline{\mathbf{s}} \neq 0] = \sum P[\overline{\mathbf{x}} \overline{\mathbf{s}}_i]$: sum (or integral) over all parameters characterizing family of signals				
$P[\bar{\mathbf{s}}_{i} \bar{\mathbf{x}}] = \frac{P[\bar{\mathbf{x}} \bar{\mathbf{s}}_{i}]P[\bar{\mathbf{s}}_{i}]}{P[\bar{\mathbf{x}}_{i}]P[\bar{\mathbf{s}}_{i}]}$				
$P[\overline{\mathbf{x}} 0]P[0] + P[\overline{\mathbf{x}} \overline{\mathbf{s}} \neq 0]P[\overline{\mathbf{s}} \neq 0]$				
	Ratio of probabilities: likelihood			
	$\Lambda[\bar{\mathbf{s}}_{\mathbf{i}}] = \frac{P[\bar{\mathbf{x}} \bar{\mathbf{s}}_{\mathbf{i}}]}{P[\bar{\mathbf{x}} 0]} P[\bar{\mathbf{s}}_{\mathbf{i}}]; \Lambda[all \ \bar{\mathbf{s}}] = \sum_{i} \Lambda[\bar{\mathbf{s}}_{\mathbf{i}}]$			
	$P[\overline{\mathbf{s}}_{i} \overline{\mathbf{x}}] = \frac{P[\overline{\mathbf{x}} \overline{\mathbf{s}}_{i}] P[\overline{\mathbf{s}}_{i}]}{P[\overline{\mathbf{s}}_{i}]} =$	$\Lambda[\bar{\mathbf{s}}_i]$		
	$P[\overline{\mathbf{x}} 0]P[0] + P[\overline{\mathbf{x}} all \overline{\mathbf{s}}]P[all \overline{\mathbf{s}}]$	$\Lambda[all \bar{\mathbf{s}}] + \frac{P[0]}{P[\bar{\mathbf{s}}]}$		
	$\frac{P[\overline{\mathbf{x}} \overline{\mathbf{s}}_{i}]}{P[\overline{\mathbf{x}} \overline{\mathbf{s}}_{i}]} - e^{-\frac{1}{2}\left[(\overline{\mathbf{x}}\cdot\overline{\mathbf{s}}_{i})^{\mathrm{T}}\cdot\widetilde{\mathbf{C}}^{-1}\cdot(\overline{\mathbf{x}}\cdot\overline{\mathbf{s}}_{i})-\overline{\mathbf{x}}^{\mathrm{T}}\cdot\widetilde{\mathbf{C}}^{-1}\cdot\overline{\mathbf{x}}\right]} - e^{-\left[(\overline{\mathbf{x}}^{\mathrm{T}}\cdot\widetilde{\mathbf{C}}^{-1}\cdot\overline{\mathbf{x}})^{\mathrm{T}}\cdot\widetilde{\mathbf{C}}^{-1}\cdot\overline{\mathbf{x}}\right]}$	$\mathbf{r} \begin{bmatrix} \mathbf{s} \end{bmatrix}$		
	$\frac{1}{P[\mathbf{\bar{x}} 0]} = e^{-\frac{1}{2}}$	-		

Detection: False Alarm (P_{FA}) vs. Detection (P_D)

- x=n+s; <s>= μ ; σ_{μ} =0; <n>=0; σ_{n} = σ
- x=n; <n>=0 ; σ_n =σ

LIGO-G020222-00-E Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

Searching for transient (burst) events

Burst group: <u>http://www.ligo.caltech.edu/~ajw/bursts/bursts.html</u>

Transient Signal Detection: optimization

- When **s** is a single, known waveform or parametrizable family:
 - Neyman-Pearson lemma:threshold on likelihood ratio minimizes P(false dismissal) for any constraint on P(false alarm).
 - Inspiral templates, CW modulated signals, ...
- Optimality not well defined when s can take values in a subspace W (i.e. when H1 is a composite hypothesis):
 - Bayesian: need to assume prior p(s), integrate likelihood over W, obtain Neyman-Pearson:
 - Excess power (Anderson et al., gr-qc/0008066)
 - Excess power for arbitrarily colored noise-- (Vicere, LIGO-P010019)
 - Average: minimize mean of P(false dismissal, s) over W, for a constraint on P(false alarm).
 - Time domain filters -- slope detection (Virgo Orsay group, gr-qc/0010037)
 - Minimax: minimize maximum of P(false dismissal, s) over W, for a constraint on P(false alarm).
 - Tfclusters (J. Sylvestre, MIT, http://www.ligo.caltech.edu/~ajw/bursts/bursts.html_)

Excess Noise Statistic

Burst Searches

Excess Power Statistic (W. Anderson et al.)

• Search strategy is useful for signals where only general characteristics are known -- e.g. $\delta t \times \delta f$ (bandwidth-time product)

- If one knows more, probably better to use some other method

- Search assumes that all signals (of same $\delta t \times \delta f$ volume) are equally likely
 - Not true, since psd in signal space is not white
 - Need generalization to over-whitened data
 Divide by psd

LIGO-G020222-00-E Lazzarini -- Physics 237b Lecture on LIGO Data Analysis

Burst Searches

Excess Power Statistic (W. Anderson et al.)

- The algorithm [1]:
 - Pick a start time t_s , a time duration dt (containing N data samples), and a frequency band $[f_s; f_s + \delta f]$.
 - Fast Fourier transform (FFT) the block of (time domain) detector data for the chosen duration and start time.
 - Sum the power in the frequency band [f_s ; $f_s + \delta f$].
 - Calculate the probability of having obtained the summed power from Gaussian noise alone using a χ^2 distribution with $2 \times \delta t \times \delta f$ degrees of freedom.
 - If the probability is significantly small for noise alone, record a detection.
 - Repeat the process for all desired choices of start times t_s , durations δt , starting frequencies f_s and bandwidths δf .

[1] A power filter for the detection of burst sources of gravitational radiation in interferometric detectors. Authors: Warren G. Anderson, Patrick R. Brady, Jolien D. E. Creighton, Eanna E. Flanagan. <u>gr-qc/0001044</u>

Use of multiple detectors in analysis

LIGO-G020222-00-E

Hanford, WA

- A number of projects are bringing detectors on line during the next few years
- Operated as a phased array, they will augment the chances for detection by excluding backgrounds and localizing sources
- True coincidences will be within milliseconds of each other

- Rejection of statistically <u>uncorrelated</u> random events
 - Coincidence window duration determined by baselines, always less than 2*13000km/(300000km/s) = 0.086s

$$\begin{split} P_{n\neq 0}(\lambda_i;T_i) &= 1 - e^{-\lambda_i T_i} \Rightarrow \text{probability of at least one event in time } T_i \\ \text{For } \lambda_i T_i << 1, \ P_{n\neq 0} \approx \lambda_i T_i; \text{ if N detectors are statistically independent :} \\ \lambda_{12\dots N} \approx \lambda_1 \prod_{i=2}^N \lambda_i T_{i1}; \\ \text{For N comparable detectors with comparable time windows} \\ \frac{\lambda_{12\dots N}}{\lambda_1} &= \text{reduction of nonGaussian event noise by coincidence reqmnt.} \\ &\approx \left[\lambda_1 T_{1j}\right]^{N-1} \text{and } \lambda_i T_i << 1 \\ \bullet \ \text{For } \lambda = 1/\min, N=3 \text{ and } T_{LIGO} = 0.02s: \text{ rate reduction is } 10^{-7} \end{split}$$

• For $\lambda = 1/\min$, N=4 and $T_{12}=T_{23}=T_{LIGO}=0.02s$ and $T_{34}=T_{max}=0.086s$: rate reduction is 1.6 x 10⁻¹⁰

Coincidence windows among detectors

Rejection of statistically <u>uncorrelated</u> random events

Event Localization With An Array of GW Interferometers

Joint Data Analysis Among GW projects From detection to validation

- For a *putative* detection:
 - Environmental, instrumental vetoes?
 - $(\Delta t_{i},\,\Delta\Omega_{i}\,)$: Seen by all detectors within consistent (time, position) windows?
 - Δh_i : Is the amplitude of the signal consistent among detectors*?
 - $\Delta \alpha_i$: Are the deduced model parameters consistent?
- Follow up analyses
 - Independent
 - Coherent multi-detector analysis ξ maximum likelihood over all detectors: {t,Ω,h,α}
- $\begin{aligned} h_i &\to \vec{h} \\ \ln \Lambda(h_i, \theta_i) &\to \ln \Lambda(\vec{h}, \vec{\theta}) \\ \sigma_i^2 &\to C_{kl} = \left\langle \vec{n}_k \otimes \vec{n}_l \right\rangle \\ & \xi \to \int \vec{h}^T \cdot C^{-1} \cdot \vec{T} \left(f; t_0 + \delta t \left(\vec{\Omega} \right) \right) df \\ h, \alpha \end{aligned}$

• Discrepancies should be explainable, e.g.:

- Not on line
- Below noise floor
- *Different polarization sensitivity, etc.

References: L. S. Finn, gr-qc/0010033 S. Bose, gr-qc/0110041

FINIS