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LIGO Introduction ‘

Stochastic GW can be detected by measuring x-correlation of two detectors.
C=(h +n)-(h,+n,)=hh,+nn, : h-SGW signa, n—noise
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LIGO Goals ‘

@ study correlated noise from power lines

» Q: Does it have “bad” components with very large time scale (~T)?
v"How: Look at the coherence of power monitors
» Q: How strong is it compare to uncorrelated noise?

v"How: Look at correlation of H & L ifo output using Sign

Correlation Test.

@ study other possible sources of correlated noise
» Q: Is there another significant correlated noise in addition to power
mains?
v"How: Look at correlation of H & L signals with power lines

removed.
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LIGO Coherence of Power Monitors ‘

more details in J.Castiglione’s talk on DC meeting

® Coherence of s (t) (Lo:PEM-LVEA_V1) and S, (t) (HO:PEM-LVEA_V1).

S(t)=s, (t)+s,(t) = A-sin(wt+06) %go%c Ap(1)

. e 2
® Average square amplitude ” Jinfln

ua{phase difiererce)

A’ =a’+a; +2aa,cos(p, —d,). RTLIN (11 i

> ¢.,0y — measured with LineMonitor

e Coherence P
N : =
b :ﬁ Zkzlexp(lA(l)k) “F
® Coherence at long time scale? “: Ad i T
1 O e L T e
y (T) ~ ﬁ A G radimne lor L=0a
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LiGO Coherence (T)

® y(T)=const, (small T<lmin)
o y(T)~—= ,(largeT)
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@ Conclusion: no terms ~T are observed on 17 days data.
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uco Correlation of L1 and H2 GW Channels ‘

® \Wavelet transform of L1 & H2 data

» bi-orthogonal interpolating wavelet of 10t order.
» time-frequency representation of data in wavelet domain W,
v'n —scale (frequency) index, m —time index

» due to of locality of wavelet basis, wavelet layers can be considered

as decimated time series (similar to windowed FT).

® Xx-correlation in wavelet domain

» calculated correlation coefficient separately for each wavelet layer

» sign correlation test was used to estimate x-correlation
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LIGO Sign Correlation Test ‘

e Sign transform: U, = sign(x — X)

> X - median of X
® Sign statistics: S =sgn(x —X)-sign(y, — Y)
e Correlation coefficient y: y =mean(s)

® y distribution (n - number of samples):

ny °
» Gaussian (large n): P(ny)~.— -exp(— _J

® Very robust:
> error from X and Y ~2/n% much less then var(y)=1/n for large n
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LIGO Autocorrelation Function ‘

® sign statistics s(t)={u,u,}
@ a(t) - autocorrelation function of s(t)
» a measure of correlated noise.
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LIGO Variance of Correlation Coefficient ‘

® uncorrelated noise

> autocorrelation function: a(0)=1, a(t 2At)=0

> variance: var,(y)=c*=1/n

e correlated noise with time scale <T,

> autocorrelation function:  a(t <T)=a,(r), at >T,)=0
» variance: var, (Y) — 1 R
n

@ Vvariance ratio — measure of © noise (depends on a_(t) only)
T/ At

R=1+ ) (n—m)a,(mAt)

m=1
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LiGo Variance Ratio (T) ‘

@ 11 data segments 4096 sec each (total 12.5 h of E7 data)
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LiGO a(t) after Line Removal
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LIGO Data with Lines Removed ‘

® OMLR method was used
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LIGO Clean L1 or H2
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® Line removal for one IFO only

» Good test for line removal algorithms
» ensure that no artificial correlation is introduced
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LIGO Summary ‘

® resultsfrom power monitors

» no evidence of “bad” noise (~T) observed on 17 day data

@ resultsfrom sign x-correlation of | FO output
» correlated power noiseistoo strong to beignored.
» thenoiseisvery non-stationary (variation by order of magnitude)
» the noiseis manly dueto power lines (proven by removing lines)
» thereareat least two components of correlated noise (Ts<lmin & >500)

» removing of power lineswill considerably improve the SGW UL

® removal of power lines may introduce artificial x-correlation ~T

» safe option: remove power linesfrom one | FO output only.
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