S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University

P. Sneddon, D. Crooks, G. Cagnoli, J. Hough University of Glasgow

Research for advanced interferometer suspensions

- Q measurements in progress of silicon samples
- 2 samples:
 - Dimensions 4 inch diameter x 4 inch long
- Sample (a) un-doped (100) material
- Sample (b) boron doped (111) material
- Measure Q factor of both samples at room temperature
- Results so far : Q of order few x 10⁷
- Most likely suspension limited work continuing
- Very promising LIGO III material particularly re: thermo-elastic damping

High thermal conductivity, κ Coated silicon

Proposed work - materials for test masses/suspensions

Thermal noise from test masses and suspensions important below few 100 Hz

• Available in large pieces (~100kg)

Future improvements

- Can be polished and coated to form high quality dielectric mirrors
- Measurements suggest intrinsic mechanical loss (and thermo-elastic loss*) comparable to sapphire at room temperature
- Can be silicate bonded to silica (and by extension to itself)
- At room temperature, thermo-elastically driven displacement noise forms hard limit to detector sensitivity
- By cooling test masses, expect significant gains in thermal/thermo-elastic noise performance

Silicon has various desirable material properties (optical and thermal noise)

* Braginsky et al

LIGO-G020163-00-Z

Power spectral density of noise due to thermo-elastic damping in a bulk substrate

$$x^{2}(\omega) = \frac{8}{\sqrt{2\pi}} \alpha^{2} (1 + \sigma)^{2} \frac{k_{b} T^{2}}{\rho C} - \frac{a^{2}}{r_{0}^{3}} \frac{1}{\omega^{2}}$$

Braginsky et al, Phys. Lett. A

where:

 α = coefficient of thermal expansion

 σ = Poissons ratio

 ρ = density

C = specific heat capacity

 $a^2 = K_{th}/\rho C$: K_{th} = thermal conductivity

material parameters

 r_0 = beam radius at which intensity drops to 1/e ω = angular frequency

Reduction of "thermo-elastic" noise by cooling

From Braginsky et al $x^{2}(\omega) = \frac{8}{\sqrt{2\pi}} \alpha^{2} (1+\sigma)^{2} \frac{k_{b} T^{2}}{\rho C} \frac{a^{2}}{r_{0}^{3}} \frac{1}{\omega^{2}}$

- (1) Need values for α (T), C(T), K_{th}(T)
- (2) Formula is valid for $\omega >> a^2/r_0^2 \sim 1/\tau$

$$x^{2}(\omega) = \text{Constant} \quad \frac{\alpha^{2} T^{2}}{C} \frac{1}{r_{0}} \frac{a^{2}}{r_{0}^{2}} \frac{1}{\omega^{2}}$$
$$= \text{Constant} \quad \frac{\alpha^{2} T^{2}}{C} \frac{1}{r_{0}} \frac{1}{\omega \tau} \frac{1}{\omega}$$

Following classical thermo-elastic damping - more generally

replace $\frac{1}{\omega \tau}$ by $\frac{\omega \tau}{1+\omega^2 \tau^2}$

Evaluate x²(ω) as a function of temperature LIGO-G020163-00-Z

Proposed work - materials for test masses/suspensions (3)

"Thermo-elastic" displacement noise and "thermal" noise in a silicon test mass as a function of temperature

 silicon substrates opens avenues for significant thermal noise improvements at low temperatures but material properties need further study

LIGO-G020163-00-Z

Proposed work - materials for test masses/suspensions

- Need to investigate, in collaboration with LSC colleagues :
 - Effects of coatings on mechanical loss of silicon substrates (room T and cryogenic)
 - Silicate bonding to joint silicon suspension elements to the silicon test masses
 - Measurement of loss factors associated with the all-silicon silicate bonding
 - Use of **GEO600 detector** for demonstration of silicon technology

