Evolution of Binary Black Holes: A Progress Report

Lawrence E. Kidder Cornell University

Collaborators:

Mark Scheel (Caltech)
Harald Pfeiffer (Cornell)

Saul Teukolsky (Cornell)

GOAL:

Model a fully relativistic binary black hole merger and extract the emitted gravitational radiation.

- Important source for gravitational wave detectors
- A difficult computational challenge

OUTLINE:

- Method of Solution
- Preliminary Results
- Future Plans

Method of Solution:

• Treatment of physical singularity
Excision

• Formulation of the problem

Parameterized first-order hyperbolic system

- mathematical analysis
- boundary conditions
- o introduce extra variables and constraints

• Numerical method

Multidomain pseudospectral method

- o high accuracy
- analytic expression

• Initial Data

Analytic, numerical

• Gauge

Analytic, fixed, active

• Boundary Conditions

Inner boundary: excision

Outer boundary: freezing, constraint preserving

Preliminary Results:

• Schwarschild BH, spherical symmetry (1D)

Einstein-Christoffel formulation [Anderson and York (1999)] runs forever exponential convergence [Kidder et al (2000)]

- Full 3D evolution of Schwarschild black hole evolutions quickly fail due to instabilities search for new formulation of evolution equations constructed a parameterized hyperbolic system
 - o cast into first-order form
 - modify evolution equations by adding constraints and redefining variables
 - numerical parameter search
 - o stability depends upon choice of parameters
 - evolution runs long enough [Kidder, Scheel, and Teukolsky (2001)]

• Binary black holes evolutions

start with holes well separated thin sandwich initial data experiment with quasi-equilibrium BCs study gauge conditions

Parmaterized Hyperbolic System:

- Spherical shell: r/M = [1.9, 11.9]
- PG slicing, analytic gauge
- resolution $(N_r = 8 48, N_{\theta} = 8, N_{\phi} = 15)$

Future Plans:

• Formulation of the problem

Expand parameter search Look for theoretical guidance Conformal decomposition

• Numerical method

Compare with finite difference methods Improve domain decomposition

• Initial Data

Which initial data is best?

• Gauge

Horizon locking? What else?

• Boundary Conditions

Constraint preserving What to do with free modes?

• Diagnostics

How do you characterize a solution? Constraints, apparent horizons Wave extraction