Investigations of mechanical loss from mirror coatings in gravitational wave interferometers

Peter Sneddon, David Crooks, Geppo Cagnoli, Jim Hough University of Glasgow

> Sheila Rowan, Marty Fejer, Roger Route Stanford University

> > Norio Nakagawa Iowa State University

Introduction

• Motivation:

 Mechanical loss due to dielectric coatings may increase thermal noise in gravitational wave detectors. Therefore, need to understand the sources of this loss and determine how to reduce it

• Previous Experiments:

- Work at Glasgow, Stanford and Syracuse have shown coating loss to be significant for Advanced LIGO.
 - $\sim 6.4 \times 10^{-5}$ for Al₂O₃/Ta₂O₅ Coatings
 - $\sim 1 4 \times 10^{-4}$ for SiO₂/Ta₂O₅ coatings
- The goal is a coating loss of ~3 x 10⁻⁵ for an SiO₂/Ta₂O₅ coating, giving a 10% increase in thermal noise power spectral density in Advanced LIGO

Development plan:

 Collaboration between Glasgow, Stanford, Syracuse, MIT and Caltech has developed a set of experiments designed to determine the source of the coating loss – the first step in reducing it.

Measurement technique

 Measure mechanical loss of several modes of suspended fused silica substrates before and after coating

$$\phi(\omega_0)_{\text{coated}} = \phi(\omega_0)_{\text{substrate}} + \phi(\omega_0)_{\text{associated with coating}}$$

- Mechanical loss is different for each mode of coated mass due to fraction of energy stored in coating for given modeshape
- For each mode, finite element analysis was used to calculate the relevant energy ratios,

$$\phi(\omega_0)_{\text{coated}} \approx \phi(\omega_0)_{\text{substrate}} + \frac{E_{\text{coating on face}}}{E_{\text{substrate}}} \phi(\omega_0)_{\text{coating on face}}$$

• A linear regression algorithm can then be used to find $\phi(\omega_0)_{coating}$, assuming $\phi(\omega_0)_{coating}$ constant with ω_0 .

Experimental Technique

- 3" by 1" fused silica samples
- Set of internal resonances of suspended samples excited using electrostatic drive
- Measure decay of amplitude of excitation for each mode (interferometric sensing)
- Obtain quality factor, Q, for each mode before and after coating and hence the loss, ϕ , for each mode where $\phi(\omega_0) = Q^{-1}$

Suspended sample

Coated and uncoated silica samples

Mode shapes

Clover 4 = C4

Asymmetric Drum = A

Fundamental Longitudinal = F

 2^{nd} Asymmetric Drum = 2A

Rationale of Current Studies

• First question:

- Where is physical location of mechanical loss of the coatings?
 - 1st interface of coating and substrate?
 - Total volume of coating material?
 - Individual interfaces of coatings?
 - Bulk of the actual coating materials?
 - (or some combination of these?)

Multi-layer dielectric stack

Coatings/Treatments Considered (So Far)

Run	Number of samples	Coating	Test	Comments
0	1	No coating	Effect of cleaning and annealing on loss	
1	2	SiO_2/Ta_2O_5 $\lambda/4, \lambda/4$ 30 layers	Effect of surface layer + 30 layer coating on loss	
2	1	SiO_2/Ta_2O_5 $\lambda/4, \lambda/4$ 2 layers	Effect of surface layer + 1 st coating layer on loss	
3a	2	SiO_2/Ta_2O_5 $\lambda/8$, $3\lambda/8$ 30 layers	Which material has effect on loss	Assumes run 1 is dominant effect
3b	2	SiO_2/Ta_2O_5 $\lambda/8, \lambda/8$ 60 layers	Does material thickness or number of interfaces affect loss	Assumes run 1 is dominant effect

• The coating/annealing was carried out by SMA Lyon

Q Results (I) - Overview

- Q measurements were made on a range of samples.
- The plot below shows the before and after results for one of each type of coating/treatment.

Q Results (II) – Initial Deductions

• Comparing 2 layer results with 30 suggest the first interface is not the dominant source of mechanical loss

 60 layer results suggest that interfaces within the multi-layer dielectric coating are not the dominant source of mechanical loss

Need more quantitative analysis of results

Consider 30 $\lambda/4$ – estimate coating loss

• Using our measurements of loss before and after coating and the following model for the loss, $\phi(\omega_0)$, of each mode:

$$\phi(\omega_0)_{\text{coated}} \approx \phi(\omega_0)_{\text{uncoated}} + \frac{E_{\text{coating on face}}}{E_{\text{substrate}}} \phi(\omega_0)_{\text{coating on face}}$$

• We can plot $\phi(\omega_0)_{\text{coated}} - \phi(\omega_0)_{\text{uncoated}}$ against energy ratio for each mode.

However, data appears far from expected straight line $R^2 = 0.24$

$30 \lambda/4$ coating - continued

- Recall, samples are annealed as part of coating process
- Previous work by Numata et al (LIGO doc G010365-00-1), Penn et al (Rev Sci Inst 72 (9)) suggests annealing may affect intrinsic loss
- Using before and after measurements invalid?
- Instead use equation from previous slide and fit for intrinsic loss ($\phi_{uncoated}$)

$$R^2 = 0.57$$

Significant improvement in fit

Analysis – subtraction of annealed mass losses

- We have an uncoated substrate annealed in the same way as coated samples
- Thus directly remove the effect of substrate

$$R^2 = 0.84$$

This model an improved fit to data

Use this model for subsequent analyses

 Nb: Consistent with annealing/ coating process resulting in mode dependent loss

Analysis - subtraction of 2 layer mass losses

• In a similar way the losses of the 2 layer mass can be subtracted to obtain an improved fit

$$R^2 = 0.82$$

This model also gives An improved fit to data

Use this model for subsequent analyses as well

Loss summary

- Results of analysis are summarised below
- c-a indicates fit using coated annealed results
- c-2 indicates fit using coated 2 layer results

	c-a fit	c-2 fit
30 (1/4,1/4)*	$(2.7 \pm 0.7) \times 10^{-4}$	$(2.8 \pm 0.7) \times 10^{-4}$
60 (1/8,1/8)†	$(2.7 \pm 0.5) \times 10^{-4}$	$(2.8 \pm 0.5) \times 10^{-4}$
30 (3/8,1/8)**	$(3.7 \pm 0.5) \times 10^{-4}$	$(3.7 \pm 0.5) \times 10^{-4}$
2 (1/4,1/4)††	$(0.9 \pm 2.8) \times 10^{-4}$	-

• Notes:

- * 30 layer results are mean from two masses
- † 60 layer results are from a single mass
- ** 30 3/8,1/8 results are mean from two masses
- †† 2 layer results are from a single mass

Deductions

- 1. Compare losses from 30 $\lambda/4$ to 2 $\lambda/4$ (2.8 ± 0.7) x 10⁻⁴ to (0.9 ± 2.8) x 10⁻⁴
 - Difficult to compare because error in 2 layer result is high
 - Differences in Q values suggest 30 layer coating has greater effect
 - Substrate/coating interface not a significant source of loss
- 2. Compare losses from 30 $\lambda/4$ to 60 $\lambda/8$ (2.8 \pm 0.7) x 10⁻⁴ to (2.8 \pm 0.5) x 10⁻⁴
 - These *are* the same
 - Intra-coating interfaces not a significant source of loss
- 3. Compare losses from 30 $\lambda/4$ to 30 $3\lambda/8$ (Ta₂O₅), $\lambda/8$ (SiO₂) (2.8 ± 0.7) x 10⁻⁴ to (3.7 ± 0.5) x 10⁻⁴
 - $\phi_{3\lambda/8, \lambda/8}$ is significantly higher than $\phi_{\lambda/4}$
 - Suggests Ta₂O₅ has a higher loss than SiO₂ in this case

Deductions (contd.)

• Partitioning the loss between the silica and tantalum we arrive at the following set of simultaneous equations:

$$\begin{split} \frac{Y_{\lambda/4,\lambda/4~\text{coating}}t_{\lambda/4,\lambda/4~\text{coating}}}{1-2\sigma_{\lambda/4,\lambda/4~\text{coating}}}\varphi_{\lambda/4,\lambda/4~\text{coating}} &= \frac{Y_{\text{silica}}t_{\text{silica}}^{\lambda/4}}{1-2\sigma_{\text{silica}}}\varphi_{\text{silica}} + \frac{Y_{\text{tantala}}t_{\text{tantala}}^{\lambda/4}}{1-2\sigma_{\text{tantala}}}\varphi_{\text{tantala}} \\ &\frac{Y_{3\lambda/8,\lambda/8~\text{coating}}t_{3\lambda/8,\lambda/8~\text{coating}}}{1-2\sigma_{3\lambda/8,\lambda/8~\text{coating}}}\varphi_{3\lambda/8,\lambda/8~\text{coating}} &= \frac{Y_{\text{silica}}t_{\text{silica}}^{\lambda/8}}{1-2\sigma_{\text{silica}}}\varphi_{\text{silica}} + \frac{Y_{\text{tantala}}t_{\text{tantala}}^{\lambda/4}}{1-2\sigma_{\text{tantala}}}\varphi_{\text{tantala}} \end{split}$$

- Using results for the 30 layer $\lambda/4$ and 30 layer $3\lambda/8, \lambda/8$ coatings, a set of simultaneous equations can be solved for the individual losses of silica and tantala
- This gives:

$$\phi_{\text{silica}} = (-0.2 \pm 1.3) \text{ x } 10^{-4} \text{ and } \phi_{\text{tantala}} = (4.3 \pm 0.5) \text{ x } 10^{-4}$$

• Using the previously obtained loss for an alumina/tantala coating (6.3 ± 1.6) x 10^{-5} (Crooks *et al*, Clas Quant Grav 19 (2002)) we obtain for the loss of an alumina coating:

$$\phi_{\text{alumina}} = (-4 \pm 4) \times 10^{-5}$$

• This implies that the loss of the alumina layer is very low and that the tantala loss (obtained from the SMA coatings) is higher than that in the alumina/ tantala coatings

Addendum - Recent findings

- Different analysis calculating $\phi_{coating}$ for each mode separately suggests $\phi_{coating}$ has a frequency dependence.
- For example, for the 30(4)-a

• Using this method we obtain the following results for the SiO_2/Ta_2O_5 losses:

$$\phi_{silica}$$
 = (-0.7 ± 0.7) x 10⁻⁴ and $\phi_{tantala}$ = (4.7 ± 0.7) x 10⁻⁴

And accordingly for alumina:

$$\phi_{\text{alumina}} = (-0.5 \pm 0.4) \times 10^{-4}$$

The way forward

• In summary:

- Mechanical loss appears to be connected to bulk material of coatings
- Ta₂O₅ appears significantly lossier that either SiO₂ or Al₂O₃
- Options for investigation
 - Fabricate coatings from alternating layers of low index materials (SiO₂/Al₂O₃
 used for narrow bandwith mirrors in gas lasers)
 - Trade-offs need many more layers, each of greater physical thickness to make a high reflector (~80 layers for 30ppm). Raises questions of practicability, optical performance and mechanical loss.
- Alternate high index materials
 - NbO₂, TiO₂, others
- Effects of annealing on mechanical loss relation to coating stress?

The way forward

- Need to correlate with optical loss measurements see talk by Roger Route
- Need to carry all parameters through to thermal noise calculation, not just to coating loss

