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Suspensions Apparatus

Automated fiber pulling lathe

Q-measurement rig
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Mode frequencies enable precise 
determination of fiber radius
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Whammy Sidebands

! 16.65Hz "

This allows measurement of Young’s modulus (74.5GPa).
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Temperature Shift of Unloaded Mode 
Frequencies Yields (dE/dT)/E
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The Frequency Shift of the Violin 
Modes Yields the Dilution Factor

In general,
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And the Agreement is Good

! data
o theory
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Obtain the Structural and Thermoelastic 
Losses from Unloaded Fiber Q’s

! Best fit:
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Free fiber frequencies are very 
consistent with inferred diameter
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But now E=73GPa compared to 74.5GPa for violin modes;
good agreement with stress-strain law E=E0(1+5.75ε).
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Put it all together to predict Q

theory, w/o NTE
and α=5.9x10-7/K

data

theory, with NTE

theory, w/o NTE 
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Conclusions

! Suspension fiber dynamics can be precisely 
quantified

! Very high Q’s possible
! Q’s not up to NTE level (and in fact more consistent 

with LTE theory- yikes!), but this likely due to low-
frequency excess loss like recoil damping

! Work is ongoing
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Dumbbell-Shaped Suspension Fibers

A new technique for low vertical bounce 
frequency and low thermal noise
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The Apparent Tradeoff

! Low thermal noise
! Optimum fiber diameter
! Smaller diameter increases 

noise

! Low bounce frequency
! Smaller fiber diameter better

optimum thermal noise

low bounce frequency
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The Ribbon Solution

! Make the cross-section as small as needed to reduce 
bounce frequency

! Set the ribbon thickness to increase dilution factor 
and push thermoelastic peak to higher frequency
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But Notice the Different Dynamics 
of the Two Types of Motion

! Pendulum/violin motion
Dissipative bending 
motion concentrated 
near ends of fiber

Loss not very sensitive 
to middle section of 
fiber

! Vertical bounce motion 
Dissipative stretching 
motion distributed along 
fiber in inverse 
proportion to cross 
section 
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This Suggests an Obvious 
Solution

! Make the fiber the optimum thickness 
for low damping at the top and bottom, 
and thinner in the middle for low vertical 
bounce frequency-

! aDUMBBELL shape
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The Equations of Motion
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The Boundary Conditions

boundaryat  continuous force                                     
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The Boundary Conditions

endfiber on  forcearbitrary               )(
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How the Boundary Conditions are 
Derived

F=EI X '''(z1)-TX '(z1)

F=EI X '''(z1)-TX '(z1)
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Two forces must approach each other as 
joining segment goes to zero length, 
otherwise that section undergoes infinite 
acceleration.
A similar argument shows that the torques 
also become equal.
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Thermal Noise Spectra: Baseline 
Ribbon vs. Dumbbell Fiber

ribbon

dumbbell fiber
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Influence of Welded Pins on 
Suspension Q

! This program can easily model the welded pins on 
the ends of suspension fibers (extreme dumbbell)

! Good approximation if pins are relatively long and 
thin

! Used this analysis to confirm Mitrofanov and 
Tokmakov’s estimate of Q due to lossy pins
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Result of Simulation

! Mitrofanov/Tokmakov estimate:

– This is based upon estimate of force exerted on pin by fiber

! Our result: this is substantially correct, although for 
thicker fibers the torque also plays a significant role
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The Big Result

A reasonably good, reasonably short pin 
will not unduly influence Q or thermal 
noise



25LIGO-G020152-00-D

Fused Silica Materials Properties 
Database

! Many different sets of material parameters for fused 
silica are in use by the various LSC groups to design 
suspensions and predict thermal noise.

! This leads to much confusion when comparing 
results between groups.

! I became aware of this when analyzing violin mode 
data above.

! We need a common set of values shared by the 
community to facilitate information transfer.
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Proposed Material Parameters

IN CONSTRUCTION

(I have lots of Syracuse data to digest)
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