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LIGO |
Suspensions Apparatus

Automated fiber pulling lathe

Q-measurement rig
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LIGo Mode frequencies enable precise
determination of fiber radius

- : -
f, == \/F 1+i+(4+(’”‘)j : .
2L\ p| kL 2 (kL) |

B 6
rﬁber T 157Mm E TAl

LIGO-G020152-00-D 3



LIGO
Whammy Sidebands

< 16.65Hz =

This allows measurement of Young’s modulus (74.5GPa).
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LIGO Temperature Shift of Unloaded Mode
Frequencies Yields (dE/dT)/E
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Measurement of [dEMDTY/E for Suprasil fused silica
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LIGO The Frequency Shift of the Violin
Modes Yields the Dilution Factor

In general,
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LIGO
And the Agreement is Good
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LIGO Obtain the Structural and Thermoelastic
Losses from Unloaded Fiber Q’s

1
|
I

® Best fit: 12 — _

oo
@
e

10 = P

a=3.9x10""/K; ®
¢=7.6x10"°

Q (millions)
L]
o

0
0.0 1000.0 2000.0 3000.0 4000.0 5000.
frequency (Hz)

LIGO-G020152-00-D 8



LIGO Free fiber frequencies are very
consistent with inferred diameter

cos(kL)cosh(xlL)+1=0;
K= \/ o’p./ EI

mode 2 3 4 5 b T &
measured frequency, Hz|172.2[{482.3|946.2[1561.9(2331.4|3254.2(4332.9
predicted frequency, Hz|172.1[481.9(944.4|1561.2(2332.2|3257.3|4336.7

But now E=73GPa compared to 74.5GPa for violin modes;
good agreement with stress-strain law E=E;(1+5.75¢).
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LIGO
Put it all together to predict Q
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LIGO
Conclusions

® Suspension fiber dynamics can be precisely
guantified

® Very high Q’s possible
® Q’s not up to NTE level (and in fact more consistent

with LTE theory- yikes!), but this likely due to low-
frequency excess loss like recoil damping

® Work is ongoing
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LIGO

Dumbbell-Shaped Suspension Fibers

A new technique for low vertical bounce
frequency and low thermal noise
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LIGO
The Apparent Tradeoff

® Low thermal noise ® Low bounce frequency
® Optimum fiber diameter ® Smaller fiber diameter better
® Smaller diameter increases
noise . low bOL/mce frequency
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LIGO
The Ribbon Solution

® Make the cross-section as small as needed to reduce
bounce frequency

® Set the ribbon thickness to increase dilution factor
and push thermoelastic peak to higher frequency
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LIGO But Notice the Different Dynamics
of the Two Types of Motion

® Pendulum/violin motion ® Vertical bounce motion
Dissipative bending Dissipative stretching
motion concentrated motion distributed along
near ends of fiber fiber in inverse
proportion to cross

Loss not very sensitive section

to middle section of
fiber
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LIGO This Suggests an Obvious
Solution

® Make the fiber the optimum thickness
for low damping at the top and bottom,
and thinner in the middle for low vertical
bounce frequency-

oa DUwseee|_| shape
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LIGO
The Equations of Motion

X, (z)=A, cos(k,z)+ B, sin(k,z)+C, cosh(k, z)+ D, sinh(k, z);

. _\/P+\/P2+4E]pa)2 |
i 2El ’

. _\/—P+\/P2 +4EIpo’
o 2EI ’
where n labels the segment of the fiber.
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LIGO
The Boundary Conditions

X, (0)=X/0)=0 fiber rigidly clamped at top

X, (z,)=X,(z)) fiber smooth at boundary
X(z)=X,(z) fiber slope smooth at boundary
El, X](z,)= EI,X(z,) torque continuous at boundary
ElLX(z))- PX|(z)) = EI,X](z)) - PX,(z))

force continuous at boundary
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LIGO
The Boundary Conditions

X,(z,)=X,(z,) fiber smooth at boundary

X (z,)=X;(z,) fiber slope smooth at boundary
El,X](z,)= EI,X](z,) torque continuous at boundary
ElL,X(z,) - PX,(z,) = EI, X;(z,) - PX;(z,)

force continuous at boundary

X3(z;)=0 fiber slope zero at mass
El.X](z,)=G arbitrary force on fiber end
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LIGO How the Boundary Conditions are
Derived

Two forces must approach each other as
joining segment goes to zero length,
otherwise that section undergoes infinite
acceleration.

A similar argument shows that the torques
also become equal.

F=ELX,"(z1)-TX,(z1)

F=EL X,"(z1)-TX,'(z1)
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LIGO Thermal Noise Spectra: Baseline
Ribbon vs. Dumbbell Fiber
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LIGO Influence of Welded Pins on
Suspension Q

® This program can easily model the welded pins on
the ends of suspension fibers (extreme dumbbell)

® Good approximation if pins are relatively long and
thin

® Used this analysis to confirm Mitrofanov and
Tokmakov’s estimate of Q due to lossy pins
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LIGO
Result of Simulation

® Mitrofanov/Tokmakov estimate:

-1
0 = 4MgQ,

2
— This is based upon estimate of force exerted on pin by fiber

® Our result: this Is substantially correct, although for
thicker fibers the torque also plays a significant role
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LIGO
The Big Result

A reasonably good, reasonably short pin
will not unduly influence Q or thermal
noise
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LIGO Fused Silica Materials Properties
Database

® Many different sets of material parameters for fused
silica are in use by the various LSC groups to design
suspensions and predict thermal noise.

® This leads to much confusion when comparing
results between groups.

® | became aware of this when analyzing violin mode
data above.

® We need a common set of values shared by the
community to facilitate information transfer.
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LIGO
Proposed Material Parameters

IN CONSTRUCTION

(I have lots of Syracuse data to digest)
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