

Low-frequency Cutoff in Advanced LIGO

P Fritschel
LSC Meeting, March 2002
LIGO Livingston Laboratory

Review goals for AdLIGO's lowfrequency performance

Written up in LIGO-T020034

- Astrophysical source potential & impact
- Interferometer design trade-offs
- Signal processing possibilities
- Upgrade options
- Recommendations

Impact of 10-15 Hz cutoff on astrophysical source detection

- Binary inspiral and stochastic background sensitivity:
 - » Less than few percent impact for f_c up to 15 Hz
- Other potential sources--GW theorist community polled for comments:
 - » Massive binary inspirals (BH/BH)
 - » Core collapse of massive stars
 - » Low frequency pulsars
- General conclusions:
 - » Not enough information to rule out or 'rule in' any sources with fe
 - » No anticipated sources are excluded or included as f_c is varied in this interval

Interferometer design: fixed components

- Active isolation system, with displacement noise performance as described in the SEI DRD
- Quad test mass suspensions, with fused silica fibers for last stage; room temperature
- Signal- and power-recycled FPMI; fixed transmission signal mirror, phase tunable
- Sapphire test masses, 40 kg
- Laser power: up to 125 W at input

Limiting noise levels

LIGO Suspension vertical thermal noise: design trade-offs

 Vertical peak exceeds horizontal thermal noise over a 2-3 Hz band (assuming 0.001 v-h coupling)

A variable cross section fiber

- Thick at the ends
 - » Minimizes the horizontal damping/thermal noise, via cancellation of linear thermal expansion by Young's modulus temperature dependence
- Thin in the middle
 - » High stress, to lower vertical mode and increase violin modes
- Cancellation effect still needs to be demonstrated
- Production and strength of variable cross section fibers must be proven

Low Frequency Technical Noise

Is it realistic to have sensitivity down to 10 Hz? Below 10 Hz?

- Technical radiation pressure
- Frequency noise
- Scattered light
- Local damping noise:
 - » Active damping noise:
 - $(3 \times 10^{-4})(10/Q)(10^{-10} \text{ m/rtHz}) = 3 \times 10^{-17} \text{ m/rtHz at } 10 \text{ Hz}$
 - Falls as ~1/f⁷
 - » Solved only by eddy current damping?
- Glitches in highly stressed fibers

Signal processing

Why not just remove the line from the data, as has been done for the violin modes?

- Kalman filtering applied to 40m data (Mukherjee & Finn)
 - » 40 dB reduction, over a bandwidth of ~1 Hz
 - » Limited by non-linear coupling not included in the model
- For the AdLIGO vertical mode, with a 0.001 v-h coupling
 - » 60 dB suppression needed to bring vertical mode signal below horizontal thermal noise
 - » 2-3 Hz bandwidth

Recommendations

- Lack of support for a sub-10 Hz v-mode requirement:
 - » No clear source impact
 - » Possibility of removal of vertical mode from data
 - » Obscuration of sub-15 Hz region by gravitational gradients
- Vertical mode frequency: 12 Hz or lower
 - » 11-13 Hz region dominated by vertical mode; line removal may allow it to be recovered
 - » Sub-10 Hz mode still desirable, if attainable without excessive risk
- Horizontal thermal noise: 10⁻¹⁹ m/rtHz at 10 Hz
- Violin mode fundamental: 400 Hz or higher
- Technical noise: controlled to allow observations to 10 Hz
- Suspension design impact:
 - » fiber design can continue to be explored, remain open for some time
 - » Penultimate mass must be chosen now, but doesn't have to be heaviest imaginable