

Institute of Applied Physics of the Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

LIGO-IAP Laboratory Research Report

Efim Khazanov, Anatoly Poteomkin, Ilya Kozhevatov, Anatoly Mal'shakov, Nikolay Andreev, Andrey Shaykin, Alexander Sergeev

Currently:

3 year (1999-2002) NSF-supported UF/IAP collaborative project "Methods and Instruments for High-Precision Characterization of LIGO Optical Components"

Livingston, 2002

Current Research

- **♦** Large aperture white-light phase-modulated interferometer (WLPMI) for preliminary control of LIGO Core Optics
- ♦ Remote *in situ* monitoring of weak distortions emerging under auxiliary laser heating similarly to what is expected in advanced LIGO core optics

Large aperture white-light phase-modulated interferometer (WLPMI) for preliminary control of LIGO Core Optics

- 1 sample
- 2 optical table
- 3 damping mount
- 4 reference plate
- 5 collimating lens
- 6 beam splitters
- 7 spatial filter
- 8 lenses
- 9 fiber bundle
- 10 spectral modulator
- 11 white light source
- 12 aperture
- 13 He-Ne laser
- 14 projection lens
- 15 CCD-camera
- 16 computer
- 17 control unit

Large aperture white-light phase-modulated interferometer (WLPMI) for preliminary control of LIGO Core Optics

White light source

Lens

Beam splitters

Collimating lens

Reference plate

Sample, 25 cm diameter

Damping mount

25 cm aperture phase map of two quartz plate gap, recorded with white-light phase-modulated interferometer (WLPMI)

Remote *in situ* monitoring of weak distortions emerging under auxiliary laser heating

- 1 WLPMI
- 2 NHS and PIT
- Optical sample bulk heating by the fundamental or second harmonic of Nd:YAG laser at a power of 10-20 W
- Surface heating with the use of a CO₂ laser at power of several Watts
- Inducing contamination of a small region (characteristic size of 20-100 micron) on the optical element's surface and focusing of low-power laser radiation (<100 mW) on it

Remote *in situ* monitoring of weak distortions emerging under auxiliary laser heating similarly

Using vacuum environment and auxiliary laser heating we will induce controllable large-scale and small-scale surface and bulk heating effects and characterize them by constructing optical thickness and wave-front inclination maps

Following measurement techniques have been developed and used:

- 1. Scanning linear Hartmann sensor
- 2. White light in situ measurement interferometer (WLISMI)

With these techniques, $\lambda/400$ precision was demonstrated and better than $\lambda/1000$ is expected in further *in situ* experiments

LIGO-IAP Laboratory

50 W average power, 25 Hz Nd:YAG laser for auxiliary bulk heating of optical samples

Scanning Linear HartmannTechnique

Scanning Linear Hartmann Technique Characteristics:

- ♦ 1d scan over 50 mm requires 60 s (120 data points), mainly due to computer processing (maximum extracting)
- **♦ 25 Hz standard video output CCD camera**
- **♦ 1064 nm CW single-mode laser diode with few milliwatt in fiber output**

Scanning Linear Hartmann Technique Accuracy:

♦ Calibration by extracting two similar data sets, 24 hours in between

Measurement of temperature gradient set-up in two transverse directions:

 CO_2 laser - 120 mW Central temperature increment estimate - 15-20 C^0 Beam size - 1 mm Maximal gradient shifted 5 mm from the center

Optical depth profile measured with scanning linear Hartmann sensor for two heating beam:

7mm Airy and 1 mm pencil structures

Optical depth profile measured with scanning linear Hartmann sensor for different heating power

White Light *In Situ* Measurement Interferometer (WLISMI)

Standard interferometers	Proposed interferometers
Measurement of optical length	The proposed method relies on measurements of
of air spacing between two	the phase of interferogram of radiation reflected
surfaces.	from two surfaces of one sample under study.
In profilometers one of them is	
a sample surface, and the other	The precise phase measurements are ensured by the
is a reference surface.	modulation of the probing radiation spectrum.
The problem of precise	The method provides a two-dimensional pattern of
measurement of phase in the	a sample's optical thickness distribution
interferogram is solved by	simultaneously over the whole aperture.
phase modulation according to	
a known time law.	The method is applicable to remote testing of
	optical elements with flat, spherical and cylindrical
	surfaces, and also with a wedge between them.

White Light *In Situ* Measurement Interferometer. Experimental setup

- 1 light source;
- 2 objective;
- 3 sample;
- 4 ocular;
- 5 measurement interferometer;
- 6 unit for synchronization and control;
- 7 CCD camera;
- 8 PC computer;
- 9 modulating mirror;
- 10 adjusting mirror;
- 11, 13 motors;
- 12 wave front shaper

CCD camera image of optical sample heated by CO₂ laser

Thickness - 15 mm Diameter - 85 mm

Phase map of optical sample heated by CO₂ laser

Simultaneous measurements of optical depth profiles under heating using two different techniques

CO₂ laser - 120 mW Beam size - 7 mm

Conclusion

- **♦ LIGO-IAP** Lab has been equipped with several instruments developed at IAP for high-precision characterization of LIGO optical components
- **♦ 25** cm aperture white-light phase-modulated interferometer (WLPMI) for preliminary control of LIGO Core Optics has been implemented
- ♦ White light *in situ* measurement interferometer (WLISMI) and Scanning linear Hartmann sensor have been constructed and integrated with the vacuum chamber
- ♦ Remote *in situ* monitoring of weak distortions emerging under auxiliary laser heating of optical samples in vacuum has been demonstrated
- ♦ Simultaneous measurements of optical depth profiles under heating using two different techniques have been performed