Radio Pulsars

- ullet Ellipticity misaligned leads to $f_{
 m GW} = f_{
 m rot} + f_{
 m prec}$.
- ullet Ellipticity in the equatorial plane lead to $f_{
 m GW}=2~f_{
 m rot}.$

•
$$\dot{E}_{\rm GR} = I\omega\dot{\omega} \Rightarrow \epsilon_{\rm max} = 6\sqrt{\dot{P}P_{\rm ms}^3}$$
.

• Theory: $\epsilon \lesssim 10^{-5}$.

Parameter	B0531+21	J0437-4715
$P(\mathrm{ms})$	33.4	5.757
$d(\mathrm{kpc})$	2.5	0.14
$\epsilon_{ m max}$	8×10^{-4}	2×10^{-8}
$\epsilon_{ m adv}$	8×10^{-6}	9×10^{-9}

• If one or both lines are detected information on the crust and/or neutron-star interior may be inferred.

EM Quiet Pulsars

- Low B-field population (Blandford).
 - There may be $(B,P)_{\min}$ required for radio emission.
- ullet Very young $\mathcal{O}(100)\,\mathrm{y}$ EM obscured SNR population.

$$-h(\epsilon_{\rm max}) \sim \frac{1}{R\sqrt{\sim \rm age}}$$

Hence, large-area blind searches to extend NS Astronomy away from currently known rotational values.

Accreting Pulsars

- Are LMXB's limited by GW emission due to mass asymmetries induced by accretion (Bildsten).
- If so, h is derived from L_x & ω and SCO X-1 is detectable by LIGO-II and a few other LMXB's are possible.

Figure 1: from Jones (gr-qc/0111007).

Figure 2: Figure 1 from Cutler and Thorne (2002). 20day integration for LMXBs and 10^7 s for Pulsars.