

E7 Lessons Learned

Albert Lazzarini LIGO Laboratory

Lessons Learned

- LDAS performed very well in all aspects
 - » There is still a lot to be done to get ready for S1 ...
- System is robust and invisible
 - » Most of the LDAS analyses were being run, managed by remote users on client PCs throughout the country
 - » Kent was very ill throughout most of the run;
 - Stuart, Peter and others were able to provide the needed support
 - The programming team at Caltech provided critical support also
- Experience from 4 days of shifts at LLO
 - » Need Control Room visibility, monitoring tools for LDAS jobs
 - This is an LSC issue
 - » 3D visualization tools could help the operations and science teams
 - f-t displays updated in realtime
 - Dynamic f₁ f₂ displays
 - » Many of the science shift tasks could be automated, reducing fatigue during late hours
 - lots of repetitive tasks

E7 Lessons Learned

LDAS Software

Kent Blackburn LIGO Laboratory

LDAS Job Summary

	Hanford LDAS	Livingston LDAS	MIT LDAS	CIT-TEST LDAS	TOTAL
Total Jobs	63600	48775	280	915	113570
Database Rows	4188188	2789132	1062	2096	6980478

- LDAS for full E7 Run: Dec. 28th, 2001 Jan. 14th, 2002
 - » Approximately one job every 10 seconds (averaged).
 - » Approximately five rows every second (averaged).
- Greater than 90% of jobs completed successfully
 - » LHO roughly 92%; LLO roughly 95%; Not checked elsewhere.
- Pre-Release testing revealed 0.3% failure rate!
 - » Pre-release dominated by dataConditionAPI thread problems.
 - » Fraction due to mpiAPI/wrapperAPI communications issues.

LDAS E7 Failure Modes

- Thread safety in dataConditionAPI cause multiple jobs to be lost at once.
 - » Caused roughly half of all failures directly due to LDAS bugs.
- Number of files per directory used to store data products by the managerAPI filled up twice near end of run deleting pre-E7 files fixed each time.
- Locked segments wrapping around from Nth frame directory to first frame storage directory not found by frameAPI - this only occurred once.
- Twice users killing jobs involving the metaDataAPI caused all jobs using database to fail - restarting metaDataAPI fixed.
- Known communication issues between mpiAPI and wrapperAPI caused node table to confuse available node list - restarting mpiAPI fixed.
- Use of stderr and stdout in LAL/LALwrapperAPI cause managerAPI to become unresponsive to requests - new LAL code submitted to fix.
- Bugs in LAL/LALwrapper cause jobs to fail subsequent LAL releases fixed.
- Pilot errors in scripts caused job failures external user scripts corrected.

LDAS E7 Failure Modes

- Time server drop out caused frames to not be available for requested time intervals
- The dataConditionAPI failed to collect data from both the frameAPI and metaDataAPI in a timely manor to continue processing -- This was only an issue for periodic search, which did not run on-line

LDAS Cost of getting ready for E7

- Dedicated ~ 6 weeks of schedule to getting ready
 - » Beta release functionality had to be deferred
- More than 2 weeks of testing required to ensure high probability of robustness, success
- LSC LAL shared object C code has evolving in parallel
 - » LDAS had to rely on dated LAL/LALwrapper code for integrated tests
- Significant increase time spent in meetings with LSC in order to integrate codes, planning for E7, etc.

Open Issues Raised Post-Run

- LDAS users from the LSC would like top level visibility into all search codes running on LDAS systems in the form of a GUI
 - » Agreed in LSUG meeting that this is not be an LDAS function, but should reside in super-job control GUI/proxy outside of LDAS and visible in control rooms. Note: This type of interface is planned for GriPhyN/LDAS.
- Creators of driver scripts used to control job submittal would like more standardized error reporting
 - » Functionality did in fact exist in LDAS, but only just appearing in the E7 release and was not widely known. Additionally, most driver scripts used a job-control library which didn't expose this information - plans are to extend the job-control library.
- LAL/LDAS Software Users Group not comfortable with responsibilities of allocation and scheduling resources
 - » Requests made that new LSC Computing Committee manage these.

LDAS

High priority items needed to get back on track with LDAS (slipped)schedule.

- Rework configuration & build rules to support migration towards beta & final releases of LDAS.
- Create new diskCacheAPI; pull out this functionality from frameAPI.
- Improve reliability of dataConditionAPI (thread issues).
- Add common resampling library to LDAS for use in both the frameAPI & dataConditionAPI
- Extend system monitoring to track API shutdowns & restart, core files &debugging, job & database statistics and user account management.
- Add interpolation, Kalman filters, regression and replace intermediate() function.
- Reduce memory usage in dataConditionAPI by average of ~ 5x

LDAS

High priority items needed to get back on track with LDAS (slipped)schedule.

- Move LDAS API processes onto new dataserver
- Improve documentation, interfaces, and table designs per LSC recommendation
- Implement new TCL channel management interface to better control datasockets.
- Add new detector geometry metadata to LDAS pipeline to better support use of ALLEGRO bar data in stochastic search code
- Add job load monitoring commands to support GryPhyN integration
 - » Continue providing LSC and GriPhyN support on day-to-day bases.

E7 Lessons Learned

LDAS Databases

Peter Shawhan LIGO Laboratory

Database Insertion Statistics During the E7 Run

		LHO	LLO
Segments:	IFOLocked	17919	5899
GDS triggers:	BitTest	34640	17761
	ChannelReadOutError	26	_
	eqMon	28	_
	glitchMon	1790683	1056375
	Glitch	271430	201113
	Lock transition	140468	11328
	MC_F violin mode	11016	7156
	Rho2 [from CorrMon]	511	195
	TFCLUSTERS	290295	68551
	TimeSliceError	1755	23762
	TID	1663	_
LDAS inspiral:	template	428970	176655
	FCT	2970	24295
LDAS burst:	power	1082676	411127
	slope	17561	58044
	TFCLUSTERS	1700621	2519617

Over 10 million entries added!

*LIGO-G*020013-02-*E*

Database Insertion Issues

- DMT segments and triggers
 - » Insertions handled by "SeqInsert" process to preserve sequence
 - » Occasional LDAS job failures caused SeqInsert to go into "error state"
 - Required human intervention
 - Delayed LDAS search codes which were checking for segments
 - » Midway through run, SeqInsert was modified to be "fault-tolerant"
- Events from LDAS search jobs
 - » No technical problems
 - » A few "learning curve" issues on the part of search code authors
- Overall insertion rate was easily handled by LDAS

Database Retrieval Issues

- Database contents can be retrieved
 - » Database queries can be submitted using guild or getMeta
 - » LIGO_LW files of database records can be converted to ASCII, read into Matlab, or parsed by a C program
- ... but there are limitations
 - » LDAS limits query output to 10000 rows
 - Action item: develop code to fetch more rows, concatenate files
 - » Have to direct query to the appropriate database
 - » Some data will need to be copied to multiple databases
 - Action item: develop software tools to facilitate copying
 - » Sophisticated "event analysis tool" still under development
- The real challenge: how to make sense of all the information

E7 Lessons Learned

LDAS Hardware

Stuart Anderson LIGO Laboratory

LDAS Hardware + Data Archive

- Interface between LDAS and CDS
 - » Disk failure worked
 - » Shared QFS filesystem worked, but...
 - » Still improving coordination
 - a) Control room monitoring of disk cache was not established until data was lost
 - b) Differing versions of frame data are expensive to manage downstream.

LDAS Hardware + Data Archive

Data archive

- » Good choice of tape drive at observatories but poor robotics
- » Good choice of robotics and tape drive for central archive
- » Growing dissatisfaction with HPSS
 - Need to accelerate evaluation of SAM-QFS alternative (SUN product)

Software management

- » Multiple test/development LDAS systems are essential
- » Software mirroring tools are mature and useful
- » Realtime development of software release policy is painful.
 - Still need to differentiate between core LDAS/LAL software versus individual search codes

LDAS Hardware + Data Archive

- Data management
 - » Reduced data sets are needed now
 - » Replication or distributed access to metadata is needed.

E7 Lessons Learned

DMT

John Zweizig
LIGO Laboratory

DMT Use During E7

- Monitors used in c.r. to track IFO/PE status
 - » IFO performance (lock statistics, line tracking, servo stability checks)
 - » Environmental noise
- Many (>4M) triggers generated
 - » Transient searches (glitchMon, ZGlitch)
- Locked segments used to steer analysis jobs

DMT Lessons Learned

- Operational status visibility
 - » Lack clear top-level summaries, acoustic alarms
- Monitor status
 - » No record of which monitors running
 - » Performance statistics not readily available.
- DMT trends not available in control room
 - » History is lost when DMT is restarted.
 - » Need to display trends with data viewer

Lessons Learned from E7

Multiple frame builders

- Control room tools, DMT and LDAS use different data paths.
 - » Control room, DMT use 1s for fast response
 - » Analysis uses 16s to reduce overhead
 - » DMT frame broadcaster reduces fb0 load.
- Data lost at LLO when fb2 not rebooted.
- Needs better monitoring and status visibility
 - » GDS tools on 16s frames where possible

E7 Lessons Learned Search Group Rediness

Shawhan, Anderson LIGO Laboratory

Inspiral Searches:

Experience from the E7 Run (Shawhan)

- Template and FCT search codes were run on-line during E7
 - » Both used "flat" (non-hierarchical) algorithms
 - » Restricted to a high-mass region of parameter space
 - » Used transfer function measured for H2 interferometer during E6
 - » Jobs submitted by scripts to analyze data only for times when the interferometer was locked
 - » Not all of the data was processed
- Lessons learned
 - » Job scripts had to be babysat due to various failure modes
 - » Job execution times include non-negligible overhead from time spent in data conditioning API, etc.
 - » Need to get reasonably reliable calibration info in a timely fashion

Inspiral Searches

Plans (Shawhan)

Near-term activities

- » Detector characterization studies
 - Investigate time variability of interferometer behavior
 - Correlate inspiral candidates with environmental transients
- » Exercise procedures for setting trigger thresholds, and study efficiencies, using simulated events buried in Gaussian noise
- » Analyze the "playground" data

Longer-term plans

- » Develop veto conditions using "playground" data
- » Study efficiencies using simulated events superimposed on E7 data
- » Analyze all of the E7 data for each interferometer
- » Combine results (using TBD statistical method) to set an upper limit
- » Develop hierarchical search algorithms

Periodic Source Status (Anderson)

3 source categories and 4 algorithms

- » All sky unbiased
 - Sum short power spectra (no doppler correction)
- » Known pulsar
 - Heterodyne narrow BW
 - Coherent frequency domain
- » Wide area search
 - Hierarchical Hough transform

Periodic Source Status (Anderson)

- No E7 real-time analysis was performed
- Post-run Time->Freq pre-processing (SFT) is proceeding and may be of more general use
- 1-of-4 algorithms is being developed for LDAS
 All 4 algorithms to use LAL

LIGO Laboratory at Caltech

- " All 4 algorithms to use LAL
- Still developing core search code