

ADVANCED LIGO SCIENCE

Kip S. Thorne CaRT, California Institute of Technology

NSF Advanced R&D Panel - 29 January 2001

L190-G010430-00-R

Conventions on Source/Sensitivity Plots

• Advanced Interferometer:

- » sapphire test masses
- » (If silica, event rate reduced by ~ 2)

• Data Analysis:

- Assume the best search algorithm now known
- Threshold:
 - » Set so false alarm probability = 1%

Overview of Sources

- Neutron Star
 & Black Hole
 Binaries
 - » inspiral
 - » merger

• Spinning NS's

- » LMXBs
- » known pulsars
- previously unknown

Stochastic background

- » big bang
- » early universe

Neutron Star / Neutron Star Inspiral (our most reliably understood source)

Science From Observed Inspirals: NS/NS, NS/BH, BH/BH

time

time

Relativistic effects are very strong -- e.g.

 h_{\perp}

- » Frame dragging by spins \Rightarrow precession \Rightarrow modulation
- » Tails of waves modify the inspiral rate
- Information carried:
 - Masses (a few %), Spins (?few%?), Distance [not redshift!] (~10%), Location on sky (~1 degree)
 - $-M_{chirp} = \mu^{3/5} M^{2/5}$ to ~10⁻³
- Search for EM counterpart, e.g. γ -burst. If found:
 - » Learn the nature of the trigger for that *y*-burst
 - » deduce relative speed of light and gw's to ~ 1 sec / $3x10^9$ yrs ~ 10^{-17} 6

Neutron Star / Black Hole Inspiral and NS Tidal Disruption

Black Hole / Black Hole Inspiral and Merger

BH/BH Mergers: Exploring the Dynamics of Spacetime Warpage

Massive BH/BH Mergers with Fast Spins

Spinning NS's: Pulsars

- NS Ellipticity:
 - » Crust strength ⇒
 - $\epsilon \lesssim 10^{-6}$; possibly 10^{-5} 10^{-22}
- Known Pulsars:
 - » Detectable by Narrow-Band IFO if
 - » $\varepsilon \gtrsim 2 \times 10^{-8} (f/1000 Hz)^2 10^{-23} x (distance/10 kpc)$
- Unknown NS's All sky search:
 - » Sensitivity ~5 to 15 worse

Spinning Neutron Stars: Low-Mass X-Ray Binaries

- Rotation rates ~250 to 700 revolutions / sec
 - » Why not faster?
 - Bildsten: Spin-up torque balanced by GW emission 10 torque
- If so, and steady state: X-ray luminosity ⇒ GW strength
- Combined GW & EM
 obs's ⇒ information about:
 - crust strength & structure, temperature dependence of viscosity, ...
 10⁻²⁴

NS Birth: Tumbling Bar; Convection

• Born in:

- » Supernovae
- » Accretion-Induced Collapse of White Dwarf

If very fast spin:

- » Centrifugal hangup
- » Tumbling bar episodic? (for a few sec or min)
- » Detectable to ~100Mpc if modeling has given us enough waveform information

• If slow spin:

- » Convection in first ~1 sec.
- » Detectable only in our Galaxy (~1/30yrs)
- » GW / neutrino correlations!

Neutron-Star Births: R-Mode Sloshing in First ~1yr of Life

- NS formed in supernova or accretioninduced collapse of a white dwarf.
 - If NS born with P_{spin} < 10 msec:
 R-Mode instability:
 - » Gravitational radiation reaction drives sloshing
 - Physics complexities:
 What stops the growth of sloshing & at what amplitude?
 - » Crust formation in presence of sloshing?
 - » Coupling of R-modes to other modes?
 - » Wave breaking & shock formation?
 - » Magnetic-field torques?

may be detectable in Virgo (supernova rate several per year)

GW's carry information about these

Depending on this, GW's

Stochastic Background from Very Early Universe

 GW's are the ideal tool for probing the very early universe

Stochastic Background from Very Early Universe

• Detect by

- » cross correlating output
 of Hanford & Livingston
 4km IFOs
 10⁻⁴
- Good sensitivity requires
 - » (GW wavelength) ≥ 2x(detector separation) 10⁻²³
 - » $f \lesssim 40 Hz$
- Advanced IFOs can detect

» much better than current 10⁻⁵ limit

GO Grav'l Waves from Very Early Universe. *Unknown Sources*

- Waves from standard inflation: ~10⁻¹⁵: much too weak
- BUT: Crude string models of big bang suggest waves *might be strong enough* for detection by Advanced LIGO
- Energetic processes at (universe age) ~ 10⁻²⁵ sec and (universe temperature) ~ 10⁹ Gev ⇒ GWs in LIGO band
 - » phase transition at 10⁹ Gev
 - » excitations of our universe as a 3-dimensional "brane" (membrane) in higher dimensions:
 - Brane forms wrinkled
 - When wrinkles "come inside the cosmological horizon", they start to oscillate; oscillation energy goes into gravitational waves
 - LIGO probes waves from wrinkles of length ~ 10^{-10} to 10^{-13} mm
 - Example of hitherto UNKNOWN SOURCE -- the most interesting and likely kind of source!