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IAP-UF research program has 3 major components:

• Development of in situ diagnostic techniques for measuring
heating- and contamination-induced distortion of optical 
components in AdL

• Investigations of thermal effects simulating 
AdL conditions

• Investigation of high power, transient effects in Faraday 
isolators and consequences for AdL

⇒ manufacture and certify Faraday isolators for AdL 

• Upgrade of 250 mm aperture white light phase modulated 
interferometer for improved stability/operation
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Advanced LIGO
180 W input powers:

• thermal effects in Core Optics during operation
⇒ 830 kW stored power in arm cavities (7.3 kW/cm2)
⇒ up to 1.6 W absorbed power in sapphire test masses
⇒ contamination a concern
• Needed:

⇒in situ, real time techniques for spatially-resolved 
diagnostics

⇒ studies of core optics heating
• thermal effects in Input Optics

⇒ Faraday isolators subjected to ~ 150 W
⇒ transient effects during loss of lock --> transient bursts ~ 600 W
• Needed:

⇒ FI prototypes at 150 W
⇒ studies of transient performance
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Prior NSF-sponsored results by IAP-UF collaboration
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• development of Faraday rotators capable of improved high 
power performance

⇒ demonstration of 45 dB isolation at 80 W

• high precision remote 
wavefront sensing methods 
based on nonlinear optics 

⇒ prototype nonlinear single 
channel Hartmann sensor
capable of λ/3000 resolution

• white light interferometer for large aperture optics wavefront 
characterization

⇒ RMS λ/1000 accuracy
⇒ 60 x 80 mm area

12 archival journal publications
acknowledging NSF support
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I. In-situ Diagnostics for Advanced LIGO Core Optics

• prototype remote sensing methods for spatially resolving
wavefront deformations

⇒ simulations of heating due to coating absorption, bulk 
absorption, and surface contamination

⇒ complementary suite of techniques for high resolution 
(λ/1000) techniques

Remote sensing of  individual test masses can provide an 
‘alarm’ for potential contamination issues 
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Ia. White light phase-modulated interferometer for 
in situ measurements of optical thickness

• phase modulation provided by external FP interferometer
• λ/200 sensitivity at 2.5 m distance 
• deliverables: λ/1000 over 100 mm aperture, remote operation

Personnel - IAP: I. Kozhevatov, N. Cheragin, A. Sergeev, technician 
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Ib. Spectral methods for in situ measurements of wavefront distortions 

• wave front distortions converted to ‘spectral shifts’ using 
diffractive element  

• wavelength stability of illuminating source essential 
• deliverables: λ/1000 over 100 mm aperture, remote operation

ba

Personnel - IAP: I. Kozhevatov, N. Cheragin, A.Mal’shakov, technician
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Ic. Nonlinear Hartmann Sensor

∆x=f
•∆ϑ

x

P << Pcr

∆ϑ
f ∆x=f•∆ϑ

x

Nonlinear medium

P > Pcr

∆x=f•∆ϑ∆ϑ

0

20

40

60

80

100

120

140

160

0 200 400 600

L E N G T H  (M IC R O N S)

IN
T

E
N

S
IT

Y
 (

ar
b

it
ra

ry
 s

ca
le

)

Personnel - IAP: A. Poteomkin, E. Khazanov, A. Mal’shakov 
E. Katin, A. Sergeev, technician

• beam centroid location improved ~ 
50x via nonlinear self-focusing

• single channel, λ/3000 sensitivity 
demonstrated 

• deliverables: scanning, remote 
operation, 100 mm aperture
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Id. Linear Scanning Hartmann Sensor 

• novel implementation of Hartmann scanner using Fourier domain
techniques

• λ/500 precision demonstrated in lab   
• deliverables: λ/1000 over 100 mm aperture
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Personnel - IAP: A. Poteomkin, N. Andreev,  A. Mal’shakov, E. Katin, 
technician
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Ie. Simulation of Core Optics Heating 
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• implementation of diagnostics in vacuum environment 
• bulk absorption (0.25 - 1.1 W) using 2nd harmonic 50 W Nd:YAG 
laser + high absorption fused silica
• coating absorption (80 - 500 mW) using CO2 laser 
• surface contamination using local irradiation
• modeling using 
Hello-Vinet, finite 
element  

laser

Personnel - IAP: all of the above; UF- D. Reitze, M. Rakhmanov 
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II. High power effect in Faraday isolators

 
 

 Forward power, 
W 

backward power, W total power,  W Time 
scale 

Normal operation.  
Steady-state locked regime . 125  5  130 ∞  
Regime A.  
Power stored in the 
interferometer emitted into both 
bright and dark ports.  

125 125 - 500 250 - 625 ms 

Regime B.  
Unlocked steady-state regime 
after power stored in the 
interferometer has rung down. 

125 125 250 s - min 

Regime C. 
Transient regime during lock 
acquisition.  

0 - 125 0 - 125 0 – 250 ms - s 

 

• bulk absorption high compared to other transparent optic elements
• self-induced birefringence superimposed circular birefringence
(Faraday effect) changes depolarization

• depolarization leads to beam quality deterioration and reduction in isolation 
ratio
• polarization modulation --> amplitude modulation 
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II. High power effect in Faraday isolators

• Deliverables

⇒ simulation of transient states to assess effects on FI performance

⇒ quantitative investigations of transient loading of FIs

⇒ development of FI performance specifications for AdL

⇒ development, characterization of FI for AdL

Personnel - IAP: Efim Khazanov, O. Palashov, N. Andreev,  A. Mal’shakov
technician
UF- D. Reitze, G. Mueller, graduate student
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III. Large Aperture White Light Phase-
Modulated Interferometer for Core Optics Characterization

• PM has advantages over traditional Fizeau methods
⇒ tuning of illumination 

⇒coated and uncoated optics
⇒ no movement of sample 

or reference
• λ/1000 precision demonstrated in lab   
• deliverables: λ/1000 over 
250 mm aperture 

Personnel - IAP: O. Kulagin, technician
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Collaboration Plan
• IAP PI: Alexander Sergeev  
• IAP Technical Liaison: Efim Khazanov
• UF Technical Liaison: Dave Reitze

•MOUs will be signed between UF and IAP for:
• Task I (in situ diagnostics and simulations) - takes place at IAP; 
⇒ IAP scientists come to UF for preliminary development of SLHS, NLHS
• Task II (FI research) - takes place at IAP & UF, characterization at UF, LLO
• Task III (large aperture WLPMI) - takes place at IAP (possibility of moving to 

LLO,LHO when completed)

• Yearly visits of 2-3 months by 2-4 IAP scientists to UF, LLO for 100 W laser
use

⇒ since 1997, 4 visits by IAP scientists to UF for 2-3 months; 1 visit to LLO


