

LIGO Laboratory

• Hanford, WA Observatory Site

LIGO-G010369-00-E

Griphyn Meeting 2000.10.02

Gravitational Wave Searches

- Merger of Neutron Star, Black Hole (NS-NS, NS-BH, BH-BH)
 - » Signal is minutes-long and characteristic shape
- BH birth from Supernova, Starquake in NS
 - » Short, unknown signal profile
- Periodic Sources (from rotating pear-shaped compact objects)
 - » Very faint, requires highly directed search
- Primordial GW
 - » Correlation between multiple observatories

LIGO-G010369-00-E

LIGO Organization

- LIGO Laboratory (Tier I)
 - » Laser Interferometer Gravitational Wave Observatory
 - » Caltech/MIT principals under NSF Cooperative Agreement
 - » Sites at Hanford, WA and Livingston, LA
- LSC (Tier II)
 - » LIGO Scientific Collaboration
 - » >26 institutions, ~350 people
- LDAS
 - » LIGO Data Analysis System developed by LIGO Laboratory in concert with the Collaboration

LIGO-G010369-00-E

www.ldas.ligo-wa.caltech.edu

Welcome to the LDAS Hanford Web Site

Present Site | LIGO LDAS Site | LSC LDAS Site | LIGO Laboratory Site

datacondition APIViewViewVieweventmonitor APIViewViewViewframe APIViewViewViewlightweight APIViewViewView	View View View
eventmonitor APIViewViewViewframe APIViewViewViewlightweight APIViewViewView	View
frame API View View View View View View View View	
lightweight API View View V	
	View
manager API View View V	View
	View
metadata API View View V	View
mpi API View View V	View
wrapper API View View V	View

SOFTWARE

LDAS Software Index LDAS/LSC Software Development LDAS Problem Reporting System User Access Tools LDAS Bulletin Board

HARDWARE

Coming Soon

GETTING STARTED

How to Build LDAS How to Configure LDAS How to Test LDAS LDAS Operator Commands LDAS User Commands

DATA

Frame Archive LDAS Database

LOG TOOLS

LDAS API Run Status Electronic Logs

LIGO Data Growth

- LIGO I Engineering Runs: 1999 2002
 - » 15 TB and growing
- LIGO I Science Run: 2002 upgrade shutdown
 - » 200 300 TB/yr
- LIGO Upgrade: 2006(?) +
 - » several PB/yr

LIGO-G010369-00-E

What are the Data?

- Continuous Time series
 - » 16 kHz, 160 Hz, 1 Hz....
- 1% Gravitational wave strain channel, plus ...
 - » 99% other channels (5000+ channels)
 - Environmental -- Seismic, Acoustic, Meteorological, Electromagnetic, Cosmic ray, ...
 - Engineering, Housekeeping, Health, Status,
- Analysis performed in both Time/Fourier domains
 - » Single or few channels over a long time vs. many channels over a short time span
 - » Need to cache, catalog, replicate, this virtual data

LIGO-G010369-00-E

Data processing challenges

- Signal Processing of "all data"
 - » [5-50 Mflop/byte] for compact binary coalescence search of GW channel
 - » x [0.2 TB/yr] total cleaned GW channel for LIGO 1
 - » System pipelines, Menu supported analyses, Personal analyses
 - » Estimation of required resources, cost, time to delivery, etc.
- LIGO archive (200 300 TB/yr)
 - » Transposed, Reduced, Filtered & other caching
 - » Metadata replicas [2 TB]
 - » Clients requesting data
 - » Clients adding data

LIGO-G010369-00-E

Data processing challenges

- Blind all-sky search for periodic sources
 - » Need to transform data for every sky direction, frequency, dⁿ/dtⁿ [frequency], (n=1,2,3..)
 - » Petaflop+ problem if the full scientific content of the data is to be exploited
- Global gravitational wave detector array
 - » Establish a network of interferometers
 - » Coincidence analysis using a phased array and coherent signal processing
 - Phased array introduces new parameters into the analysis -- increases dimensionality of the search 10X - 100X
 - Sky position sensitivity to searches
 - Wave polarization
 - Cross-spectral correlations of noise
 - » Virgo (France/Italy), GEO (Germany/UK)

LIGO-G010369-00-E

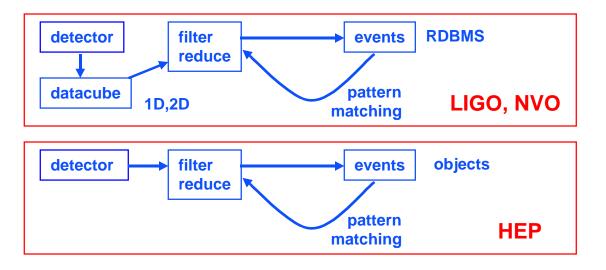
Griphyn Meeting 2000.10.02

Services from a Grid

• Distributed Computing Power

- » Code development sandbox
 - Also menu & parameter driven processing
- » Compute-intensive background jobs
 - "Pulsar@GriNhyN" project
- » How to make code portable, migratable within a grid

• Virtual Data

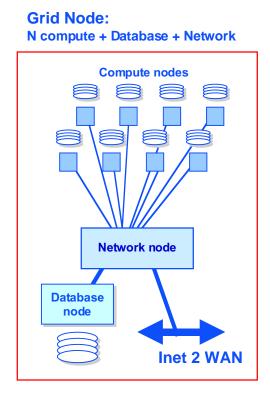

- » Data, Catalog, Reduced Data, Mirror
- » From browsing to "all data"
- » Data transformations

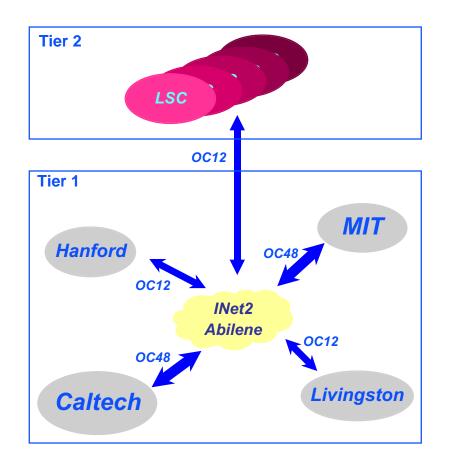
LIGO-G010369-00-E

LIGO vs NVO vs HEP

• Processing

• Network


- » NVO is federation, LIGO is coincidence
- » In both cases registration is important


LIGO-G010369-00-E

Griphyn Meeting 2000.10.02

Architecture

LIGO-G010369-00-E

Griphyn Meeting 2000.10.02

Needs

- Infrastructure to enable dispersed groups of collaborators to work without barriers
 - Need for "trickle down" of resources to smallest universities
 - Data mirroring to reduce time-to-access, cost-to-access
 - High bandwidth connections

• Infrastructure support personnel

- Multiple Tier 2 centers imply some level of redundant support infrastructure needed
 - IT staff
 - Programming staff
 - Research staff
- The price for distributed vs. monolithic computing infrastructure
- Benefits outweigh costs

LIGO-G010369-00-E