The tfclusters package Julien Sylvestre LIGO-MIT LIGO-G010344-00-D LSC Meeting - LIGO Hanford Observatory 13 August 2001 #### tfclusters - Efficient algorithm for detecting unmodeled bursts in Gaussian noise - Based on time-frequency power thresholding and clustering analysis. Uses short-time Fourier decomposition. - lal implementation completed and tested on E2 data - lalwrapper implementation completed (tested only with stand-alone wrapperAPI on fake data) - Will work best on white noise, but can handle lines and colored noise (but must be Gaussian) - Parallel implementation in DMT for real-time triggers generation ## Noise model and first threshold • Threshold spectrogram to get uniform black pixel probability: power threshold from exponential or non-central χ^2 void LALComputeSpectrogram(LALStatus*, Spectrogram*, TFPlaneParams*, REAL4TimeSeries*); void LALTFCRiceThreshold(LALStatus *, REAL4 *, RiceThresholdParams *); void LALGetClusters(LALStatus*, CList*, Spectrogram*, CListDir*); # Clustering Analysis (second threshold) - In white noise, large clusters are exponentially unlikely: threshold on cluster size (number of pixels) - To increase efficiency, allow close pairs of small clusters # Integrated power (third threshold) Reject a fraction of the clusters that would make the first two cuts with just steady-state noise: threshold on Prob(observed integrated power | cluster size, passed 1st & 2nd cuts) void LALClusterPowerThreshold(LALStatus *, CList*, CList*, CListDir*); • For θ_{ij} the representation of the signal in the short-time Fourier basis, the test is $$\sum_{\text{cluster}} |\theta_{ij}|^2 \Theta(|\theta_{ij}|^2 - \lambda) > \Lambda(\text{cluster size})$$ ### lalwrapper so - split time series in n overlapping segments - get event list for every segment - merge lists on master ### Optimality | Problem | Optimal Test | Optimal Estimator | |---|---------------------------|--------------------| | Binary Hypothesis $W = \{\theta\}$ | Likelihood ratio | N/A | | Prior on signal $p(\theta)$ | Averaged likelihood ratio | Bayes estimation | | Filter bank $W = \{\theta_i : i=1,2,\}$ | Maximum likelihood ratio | Maximum likelihood | | Smooth (sparse) signal | Power after thresholding | Hard thresholding | $$y = s + n, s \in W$$ ### Smooth (sparse) signals Model the signal subspace as a L_p ball minus the (L₂) ball of signals with SNR < ε $$W = U_p(C) \setminus U_2(\varepsilon)$$ for the balls $$U_p(C) = \left\{ \theta \in R^N : \sum_{i} |\theta_i|^p < C^p \right\}$$ - L_p balls are made of sparse vectors if p<2. Sparse vectors in the wavelet domain (or STFT) are smooth functions in the time domain. - If p>2, optimal detectors are "quadratic forms" in y. - If p<2, optimal detectors involve "coordinate-wise truncations" on y. #### Remarks - Detectors with coordinate-wise truncations are optimal over a wide range of measures of smoothness (Besov, Triebel,...) - Clustering analysis is added "by hand". No proof of optimality (yet). - Of course, must choose a basis where the signal is sparse. Wavelets good for that (unconditional bases of smooth functional spaces).