Reducing Thermoelastic Noise by Reshaping the Light Beams and Test Masses

Research by
Vladimir Braginsky, Sergey Strigin & Sergey Vyatchanin
[MSU]
Erika d'Ambrosio, Richard O'Shaughnessy & Kip Thorne
[Caltech]

LIGO-G010333-00-D

Talk by Thorne, O'Shaughnessy, d'Ambrosio LSC Meeting Hanford, WA, 15 August 2001

CONTEXT AND OVERVIEW

Sapphire Mirrors

KEY POINTS ABOUT THERMOELASTIC NOISE

Physical Nature

- On timescale ~0.01 secs, random heat flow
 hot and cold bumps of size ~0.5 mm
- Hot bumps expand; cold contract
- Light averages over bumps
- Imperfect averaging => Thermoelastic noise

Computed via fluctuation-dissipation theorem

- Dissipation mechanism: heat flow down a temperature gradient
 Computation highly reliable (by contrast with conventional thermal noise!)
- This reliability gives us confidence in our proposal for reducing thermoelastic noise

Strategies to Reduce Thermoelastic Noise

 Gaussian beam averages over bumps much less effectively than a flat-topped beam.

- The larger the beam, the better the averaging.
 - Size constrained by diffraction losses

OUR FLATTENED MIRRORS & BEAMS

- Compute desired beam shape:
 - Superposition of minimal-spreading Gaussians -- axes uniformly distributed inside a circle of radius D
 - Choose D so diffraction losses are 10 ppm
 - Compute shape of mirror to match phase fronts

PREVIEW OF OUR CONCLUSIONS

[same as in March!] [details to be described by O'Shaugnessy & d'Ambrosio]

 O'Shaugnessy: By using these flattened mirrors and modes, thermoelastic noise can be reduced from that of the present LIGO-II baseline design by

$$-\sqrt{s_h}/\sqrt{s_{hBL}} = 0.42;$$

- NS/NS range increased from 300 Mpc to 455 Mpc]
- There appears to be little danger of exciting parasitic modes

d'Ambrosio:

- FFT simulations, & perturbation theory analysis => it is sufficient to control mirror tilts to 0.01 microradians
 - Negligible increase of diffraction losses
 - Power out dark port (for 125 W input & ignore losses):
 - before mode cleaner: 60 mW (tilt angle / 0.01 μrad)^2
 - After mode cleaner: 3 mW (tilt angle / 0.01 μrad)^4

ISSUES THAT NEED STUDY

Theoretical Modeling issues:

- Tolerances on mirror shapes
 - Absolute tolerances
 - Tolerances in relative differences between mirrors

- Thermal lensing and its compensation
- Possible dynamical instabilities
 - e.g., rocking motion due to positive rigidity combined with time delay in response
- Laboratory prototyping

Computing noise: Fluctuation dissipation theorem

 ∑ Thought experiment:
 Static pressure on mirror face
 Shape is beam intensity profile, normalization F₀
 ⇒

$$S_h = 4 \left(\frac{k_b T \alpha E}{(1 - 2\nu)C_V \rho} \right)^2 \frac{1}{\omega^2} I \qquad I = \frac{1}{F_o^2} \int d^3 r |\nabla \theta|^2$$

- ∞ I contains information about beam, mirror shape and size
- ∞ Find I via standard elasticity code (finite-element)

Results: Cylindrical, LIGO-II Mirror

Sapphire Mirror: R=15.7 cm, H=13 cm,

Baseline design:

Gaussian beam, 2 ppm diffraction losses ⇔ curvature R_c=54 km

 \rightarrow D_{NS-NS}=300Mpc

Flattened Mirrors:

Flat-topped beam, 10 ppm losses, cylindrical mirrors

$$\sqrt{I/I_o} = \sqrt{S_h^{TE}/S_{h,o}^{TE}} = 0.54$$

 \rightarrow D_{NS-NS} = 410 Mpc , rate up x2.6

Results: Conical mirrors

Flat-topped beam

10ppm diffraction losses on inside

1% diffraction losses on outside

$$\sqrt{I/I_o} = \sqrt{S_h^{TE}/S_{h,o}^{TE}} = 0.42$$

 \rightarrow D_{NS-NS} = 455 Mpc, rate up x3.5

- ∞ Asymmetric "conical" mirrors
 - Use different-shape mirrors at each end
 - Can be slightly more effective (x0.9)

Degeneracy?

Flat spherical mirrors have close frequency seperation. Do ours?

Azimuthal Nodes

$$\Delta\omega=\omega-\omega_{o,o}$$

Nearly flat → problems?

$\frac{\Delta\omega}{\pi c/L}$			\oplus	
	0	0.0404	0.1068	0.1943
	0.1614	0.2816	0.4077	-0.4581
	0.4303	-0.4140	-0.2570 (X)	-0.0812 (X)
	-0.2330 (X)	-0.0488 (X)	0.1406 (X)	(X)

Radial Nodes