# TITLE

# Faraday Isolators and Electro-optical Modulators:

**A Progress report** 

# Guido Müller University of Florida

LSC-Meeting Hanford, August 2001

LIGO-G010321-00-Z

# TABLE OF CONTENT

- **1. Thermal Lensing**
- 2. Compensation
- 3. Experimental Setup

- 4. Modulators
- 5. Faraday Isolator
- 6. Summary

#### **TEMPERATURE DISTRIBUTION**





#### THERMAL LENSING

**3 different effects create thermal lensing:** 

- thermal changes in index of refraction dn/dT
- refractive index changes due to stress
- thermal expansion (curvature in the surfaces)

$$\Delta \Lambda(r) = \Delta \Lambda_{thermal}(r) + \Delta \Lambda_{stress}(r) + \Delta \Lambda_{expansion}(r)$$
  

$$\approx \Delta T(r) L \underbrace{\left(\frac{dn}{dT} - \frac{n^3}{2}\rho_{12}\alpha\right)}_{\frac{dn}{dT}eff} + 2\alpha nw \Delta T(r)^a$$

**Most cases:** 
$$\Delta \Lambda_{thermal}(r) > \Delta \Lambda_{expansion}(r)$$

<sup>*a*</sup>Mansell et.al. Appl.Optics 40(3) (2001)

## LIMITS ON THERMAL LENSING

First Order:

• Simple Lens:

$$\Delta T(w) = \Delta T(0) - \Delta T(r = w) \approx 0.1 \frac{\alpha P}{k_{th}}$$

$$\Delta\Lambda(w) = \frac{dn}{dT} L\Delta T(w) \approx 0.1 \frac{dn}{dT} \frac{LP_{abs}}{k_{th}} \qquad \Rightarrow \qquad R_{th} = \frac{w^2}{2\Delta\Lambda(w)}$$

**Remarks:** 

- Can be included in mode matching calculations
- add some uncertainty in the mode matching calculations
- mode matching depends now on laser power
- bad mode matching for low power alignment states

## LIMITS ON THERMAL LENSING

#### Second Order:



 $\bullet$  Allow 3% higher order modes in each EOM  $\Rightarrow$  3 EOMs  $\approx$  10% losses

• > 95% mode matching between MC and CO  $\Rightarrow$  FI < 4% HO-modes (1% goal)

#### **PUMP-PROBE-EXPERIMENT**



#### **MODULATORS: MATERIALS**



| •      |                                |                          |                                |                      |      | -    |
|--------|--------------------------------|--------------------------|--------------------------------|----------------------|------|------|
| _iNb03 | <b>333</b> <sup><i>a</i></sup> | <b>3.8</b> <sup>a</sup>  | <b>5.6</b> <sup><i>a</i></sup> | <1.5e-3 <sup>a</sup> | 327  | ?    |
| KTP    | <b>224</b> <sup><i>e</i></sup> | <b>0.83</b> <sup>c</sup> | 13 <sup>e</sup>                | <1e-3 <sup>e</sup>   | 3513 | 0.7  |
| RTA    | <b>273</b> <sup>e</sup>        | ?                        | ?                              | <1e-3 <sup>e</sup>   | ?    | 4e-3 |

<sup>a</sup>: Crystal Technology, Inc.

<sup>b</sup>: Non linear optics Book, KTP: dn/dT=(1.7), 2.5,3.4 e-5 Kato, IEEE J. of QE 28(10) 1992)

 $\Phi_{\rho}$ 

<sup>c</sup>: Wiechman et.al. Opt. Lett. 18(15) (1993) (Sony)

<sup>*d*</sup>: Karlsson et.al. Opt. Lett. 24(5) (1999) (miss  $p_4$  value, assumed  $p_4 = 0$ ).

<sup>e</sup>: Stolzenberger @ Crystal Associates, Raicol crystals claims < 50 ppm/cm for KTP

**LiNb03:**  $k_y$ ,  $E_z$ ,  $n_z = n_e + \Delta n'$ ,  $n_x == n_0 + \Delta n''$ . **KTP:**  $k_y$ ,  $E_z$ : **KTiOPO**<sub>4</sub> **RTA:**  $k_y$ ,  $E_z$ : **RbTiOAsO**<sub>4</sub>

#### **MODULATORS: RESULTS**

| Crystal                          | Pump[W] | P <sub>00</sub> | $P_{BE}$ | Ratio           | $P_{10}$ | $\frac{P_t}{P_r+P_t}$ | Comments   |
|----------------------------------|---------|-----------------|----------|-----------------|----------|-----------------------|------------|
| bare beam                        | 0       | 711±10          | 40±5     | 5.6%±1%         | 51±5     | 1.5e-4                |            |
| RTA (10mm)                       | 0       | 722±10          | 33±5     | <b>4.6%</b> ±1% | 40±5     |                       | no housing |
| RTA (10mm)                       | 45      | 720±10          | 30±5     | <b>4.2%</b> ±1% | 39±5     | 2e-4                  | "          |
| <b>LiNbO</b> <sub>3</sub> (40mm) | 0       | 740±10          | 41±5     | 5.5%±1%         | 40±5     |                       | no housing |
| <b>LiNbO</b> <sub>3</sub> (40mm) | 45      | 641±10          | 52±5     | 8.1%±1%         | 22±5     | 1.6e-4                | "          |
| <b>LiNbO</b> <sub>3</sub> (40mm) | 0       | 768±10          | 30±5     | 3.9%±1%         | 53±5     |                       | housing    |
| <b>LiNbO</b> <sub>3</sub> (40mm) | 45      | 605±10          | 110±5    | 18.2%±1.5%      | 33±5     | 6.7e-4                | "          |

Thermal lens in RTA: invisible Thermal lens in LiNb0<sub>3</sub>, w/o housing: visible, but tolerable Thermal lens in LiNbO<sub>3</sub>, with housing: unacceptable

**Guidelines for Design:** 

- RTA (or RTP, KTA, KTP)
- Power management essential  $\Rightarrow$  Temperature stabilization with Peltier elements
- Cooperation with Quantum Technology (Lake Mary, FL) (?)

### **OPTICAL ISOLATION**

**Two Problems:** 

- **1.** Birefringence  $\Rightarrow$  reduces Isolation Ratio
- 2. Thermal lensing
- 1. two FR-crystal Design compensates birefringence (Efim Khazanov et. al. (LSC-conference 03/01)
- 2. negative thermal lens compensates positive thermal lens (UF-Design)

# **OPTICAL ISOLATION**



#### **PUMP-PROBE-EXPERIMENT**



#### THERMAL LENSING AND COMPENSATION

| Р             | <i>P</i> <sub>00</sub> | $P_{BE}$ | Ratio | $P_{10}$ | $\frac{P_r}{P_r+P_t}$ |
|---------------|------------------------|----------|-------|----------|-----------------------|
| <b>W</b> 0    | 771                    | 17       | 2.2%  | 62       |                       |
| 45W (no FK51) | 620                    | 143      | 23%   | 16       | 2.1e-4                |
| 0W (w.FK51)   | 674                    | 27       | 4.0%  | 42       |                       |
| 45W (w. FK51) | 641                    | 17       | 2.6%  | 43       | 8.3e-4                |

20% thermal lensing  $\Rightarrow$  2% HO-modes 150W  $\Rightarrow$  12% HO-modes (w/o) compensator Summary Isolator:

- Two Element Isolator compensates birefringence
- dn/dT < 0 element compensates thermal lensing</li>
- Start to look into different materials (BBO ?)

Result

- Thermal lensing could be reduced by a factor 8
- beam distortions/higher order modes ?

(Experiment still limited by ellipticity in input beam) Thermal Lensing measurements and Compensation: G.M., Rupal Amin, Donovan McFeron, Ramsey Lundock David Guagliardo, David Tanner, David Reitze University of Florida

Birefringence compensation - New Faraday Design Efim Khazanov,Nikolay Andreev, Oleg Palashov, Alexander Sergeev Inst. of Applied Physics, N. Novgorod, Russia

Theory: Mansell, Hennawi, Gustafson, Fejer, Byer, Clubley, Yoshida, Reitze Appl. Opt. 40(3), pg. 366 (2001)

> LSC-Meeting Hanford, August 2001